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Abstract
Estimating the turbulent kinetic energy at the nozzle outlet is necessary to model turbulent jet breakup. We identified
errors in a model of nozzle turbulence developed by Huh et al. [1] which made the model inaccurate. To develop an
improved model, we derived a generalized form of the Bernoulli equation for non-cavitating flows. The equation can
be used to estimate turbulent kinetic energy, k, and dissipation, ε, in internal flows given loss coefficients or friction
factors and a turbulence model. The equation allows turbulent kinetic energy and dissipation to be estimated without
computational fluid dynamics. The estimates can be used as-is where turbulent kinetic energy or dissipation are
desired, or as a more accurate boundary condition for computational fluid dynamics. A model for fully developed
pipe flow is developed and compared against experimental data. A nozzle turbulence model which could replace
Huh et al.’s is also developed, but the model has not been validated due to a lack of experimental data.

Keywords: internal flow, nozzles, turbulence modeling, turbulent kinetic energy, turbulence intensity, turbulence
dissipation, loss coefficients, major loss, minor loss

Introduction and background
Turbulent kinetic energy in internal flow systems can often only be found through computational fluid dynamics

(CFD), because measuring turbulence quantities in internal flows is usually difficult. Reynolds averaged CFD of
single components is presently tractable, but computationally expensive. Accurate CFD of complex piping systems
in practice is difficult, if not prohibitively expensive. Further, one source of error in CFD is the specification of
inlet turbulent kinetic energy and dissipation boundary conditions. Given these concerns, there is a need for a
computationally tractable methodology to predict turbulent kinetic energy in internal flows.

There’s also an interest in extending the Bernoulli equation to more general contexts. There are two approaches
to generalization. The first approach is to find paths other than streamlines where the Bernoulli integral is constant
under more general conditions, e.g., in viscous flows. Brutyan et al. [2] identify such paths for general steady viscous
flows. The second approach is to determine how the Bernoulli integral varies along streamlines under more general
conditions. Typically, this is only done for internal flows. Grose [3] and Synolakis and Badeer [4] develop viscous
corrections to the Bernoulli equation. A more common approach adds a term for energy “lost” along the flow path in
internal flows. The equation has been called the “mechanical energy balance”, the “engineering Bernoulli equation”,
or the “extended Bernoulli equation”. The models for the lost energy are ∆p = ζ · 1

2U
2 for pipe fittings (“minor

loss”) and valves and ∆p = ( f L/d) · 1
2U

2 for pipe segments (“major loss”). The lost energy is attributed to viscous
dissipation by Panton [5, p. 133] and Bird et al. [6, p. 204]. However, the previous derivations of the loss term are
only valid for steady flows, precluding the possibility of anything one would call turbulence. Pope [7, p. 125] notes
that the (laminar) mean flow dissipation term the previously studies highlight is generally negligible. Consequently,
how the lost energy is distributed in a turbulent flow is unclear. A relationship between the loss and turbulence
quantities like the turbulent kinetic energy and dissipation exists, and it will be detailed in this paper.

Past researchers have attempted to relate flow losses to turbulence quantities, without clear success. Most
previous theories modeled turbulence reduction by screens as a function of the loss coefficient of the screen. Loehrke
and Nagib [8, p. 5] suggested that the theories disagree with the data because the theories treat the screen as only a
turbulence suppression device, and do not include any way for turbulence to be generated. Examining both screens
and honeycombs, Scheiman and Brooks [9] agree with that conclusion. Groth and Johansson [10] made the same
suggestion and showed experimentally that the turbulence intensities immediately downstream of the screen are
higher than that upstream of the screen, but the turbulence decays further downstream of the screen. Groth and
Johansson’s measurements show that both turbulence generation and dissipation are factors.

For modeling screen turbulence, Baines and Petersen [11, p. 471R] proposed an equation similar the Bernoulli
equation along a streamline with additional terms for turbulent kinetic energy and dissipation. No derivation was
provided. The equation was justified by stating it represents energy conservation, however, this is implausible as
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there are no terms for energy transfer between streamlines. No link between this equation and flow losses was made.
Focusing on more general hydraulic resistances, Nikitin and Nikitina [12] developed models for the maximum RMS
pressure p′ using the friction factor or loss coefficient in pipe and general hydraulic resistances. Nikitin and Nikitina
used dimensional analysis, not energy conservation, to determine p′, and the equations developed are valid only if
the inlets have negligible turbulence.

d0

L0

din flow

Figure 1. Nozzle geometry.

Independent from the attempts to model turbulence through screens or
general hydraulic resistances, researchers interested in liquid jet breakup
developed simplified models to estimate turbulent kinetic energy at the outlet
of a nozzle. Early models were developed by Natanzon [13], Tsyapko [14], and
Jackson [15, p. 111]. More notable, however, is the model of Huh et al. [1, 16]
(abbreviated as “Huh’s model” here). In Huh’s model, the turbulent kinetic
energy at the nozzle exit can be estimated with the equation

k0 =
U

2
0

8L0/d0



1
C2
d
− ζc −

(
1 − c−2

)
(1)

where k0 is the plane averaged turbulent kinetic energy at the nozzle exit, U0 is the (plane averaged) velocity through
the nozzle orifice, L0 is the nozzle orifice length, d0 is the nozzle orifice diameter, Cd is the discharge coefficient
of the nozzle, ζc is the contraction loss coefficient, and c ≡ Ain/A0 = (din/d0)2 is the area contraction ratio of the
nozzle. See figure 1 for an illustration of a conical nozzle with a cylindrical orifice using the previous notation.

This model has two major problems evident by inspection. First, in this model the nozzle exit turbulent kinetic
energy is not a function of the nozzle inlet turbulent kinetic energy. This is inconsistent with the evidence that
strong turbulent kinetic energy at the nozzle inlet can affect the stability of a liquid jet [17, 18]. Second, this
equation implies that turbulent kinetic energy grows arbitrarily large as L0/d0 decreases to zero, and that turbulent
kinetic energy goes to zero as L0/d0 grows arbitrarily large. Both are false. Klein [19, p. 246, fig. 3] reviews past
measurements of turbulent kinetic energy as a function of development length. For small L0/d0, k approaches the
inlet value, and as L0/d0 increases to infinity (i.e., the flow becomes fully developed), k goes to a value determined
by the friction factor for fully developed flow. The latter value is independent of the inlet turbulent kinetic energy.
Further, if k grew arbitrarily large as L0/d0 decreased, this would violate energy conservation. k increasing would
also imply that the stability of a liquid jet would be worse for shorter nozzles, but typically the opposite is true [20].

These problems are caused by an error made in the derivation of equation 1. Huh et al. use a force balance
in an attempt to relate the turbulent kinetic energy to the pressure drop across the nozzle orifice. Presumably the
“turbulent stress” used in the model is the Reynolds shear stress (〈uv〉 if one divides by the liquid density), but this is
not the same as the turbulent kinetic energy (k), what is desired in the model. The model implicitly assumes the two
are the same or at least proportional. One can relate 〈uv〉 to the turbulent kinetic energy via the stress-intensity ratio,
|〈uv〉/k |, found to be about 0.3 in many shear flows [21, pp. 116, 121, 126, 138]. However, this option is not viable,
as using wall friction requires taking the force balance at the orifice walls. Both 〈uv〉 and k are zero at smooth walls
due to the no-slip and no-penetration conditions [7, p. 269]. The stress at a smooth wall comes entirely from the
viscous component∗. Finally, the constant stress-intensity ratio approximation is not particularly accurate [22].

Further, k is determined solely by the nozzle orifice walls in Huh’s model, explaining why inlet turbulent kinetic
energy does not factor into the model. In addition to ignoring the effect of inlet k, this implies that the contraction
does not change the turbulent kinetic energy. The effects of contractions on turbulent kinetic energy and anisotropy
are well known [23–25]. Rapid distortion theory (RDT) can model these effects.

The failures of previous models prompted the development of a more rigorous approach which also uses
empirical loss coefficients.

Derivation of the turbulent Bernoulli equation and relationship between loss and turbulence quantities
We start with a standard derivation of the Bernoulli theorem, albeit from the Reynolds averaged equations rather

than the instantaneous equations. We depart from the standard derivation when we take the new term for the work
done by the Reynolds stress, and decompose that term into the production of turbulent kinetic energy and a turbulent
flux. This returns an equation including terms for energy transfer between streamlines. Algebraic manipulation and
integration over the volume of the internal flow path returns a relationship between flow losses, k, and ε. For brevity,
the ensemble mean velocity in the Reynolds decomposition will be denoted with a capital Ui rather than 〈Ui〉, and
the fluctuating terms will be denoted with lowercase ui .

∗That is not true for the special case of rough walls, but in this case one would still need to know the viscous component of the wall stress,
which is not generally known. The link between the plane average value of 〈uv〉 (to find k) and the value of 〈uv〉 at the wall is also unclear.
There is no simple link between τw and k even for rough pipes. In the remainder of this paper, we assume that all fluctuations are zero at the wall.
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Differential turbulent Bernoulli equation for a streamline
Start with the Reynolds averaged Navier-Stokes equation in Stokes form and consider the statistically stationary

case (no change in the mean with time) [7, p. 23, p. 86]:

�
��∂Ui

∂t
+
∂ 1

2UjUj

∂xi
− ε i jkUjωk = −

1
ρ

∂P
∂xi
+ ν

∂2Ui

∂x j∂x j

−
∂〈uiu j 〉

∂x j

. (2)

Rewrite the previous equation so that only ε i jkUjωk is on one side, and the remaining terms are on the other:

ε i jkUjωk =
∂

∂xi

(
1
2UjUj +

P
ρ

)
+
∂〈uiu j 〉

∂x j

− ν
∂2Ui

∂x j∂x j

. (3)

Consider a vector si which is in the direction of a streamline at a point in space. Multiply the previous equation
by a differential element of this vector:

((((
((ε i jkUjωk dsi =

∂

∂xi

(
1
2UjUj +

P
ρ

)
dsi +

*.
,

∂〈uiu j 〉

∂x j

− ν
∂2Ui

∂x j∂x j

+/
-

dsi . (4)

The cross product term has no component in the direction of Ui , which is the same as si , so ε i jkUjωk dsi is
zero. Note that the local differential length element along a streamline can be related to the local time-averaged
velocity vector by dsi = Ui dt. This is done for the Reynolds stress term only:

0 =
∂

∂xi

(
1
2UjUj +

P
ρ

)
dsi − ν

∂2Ui

∂x j∂x j

dsi +Ui

∂〈uiu j 〉

∂x j

dt. (5)

Now, note that the following decomposition is a consequence of the product rule:

Ui

∂〈uiu j 〉

∂x j

=
∂Ui〈uiu j 〉

∂x j

−〈uiu j 〉
∂Ui

∂x j︸         ︷︷         ︸
production

. (6)

The second term is recognized as the production of turbulent kinetic energy. Substituting the expression for
turbulent kinetic energy [21, p. 49] into the result above returns

Ui

∂〈uiu j 〉

∂xi
= Ui

∂ k
∂xi
+ ν

〈
∂ui
∂x j

∂u j

∂xi

〉
︸          ︷︷          ︸

ε

+
1
2
∂〈u juiui〉
∂x j

− ν
∂2k

∂xi∂xi
+
∂Ui〈uiu j 〉

∂x j

−
1
ρ

∂〈uip〉
∂xi

. (7)

The previous equation can be used to see how turbulent kinetic energy changes along a streamline. Aside from
the first and third terms, everything else is between streamlines. Later, when we average over the projected area of
the pipe, the other terms go to zero at the walls as there is no transfer between the pipe and the walls due to the
no-slip and no-penetration boundary conditions. These terms may need to be kept for inlets and outlets, however.

Substituting the result from equation 7 into equation 5 returns (after application of Ui = dsi/ dt to the turbulent
kinetic energy derivative and some rearrangement)

0 =
∂

∂xi

(
1
2UjUj +

P
ρ
+ k

)
dsi − ν

∂2Ui

∂x j∂x j

dsi

+

[
ε +

1
2
∂〈u juiui〉
∂x j

− ν
∂2k

∂xi∂xi
+
∂Ui〈uiu j 〉

∂x j

−
1
ρ

∂〈uip〉
∂xi

]
dt . (8)

Turbulent Bernoulli equation for a streamtube with no-slip and no-penetration boundary conditions
Equation 8 is valid along a particular streamline, but there are many terms which need to be modeled, limiting

its utility. Consequently, we seek to develop a version for a streamtube applicable in internal flows where there
are no-slip and no-penetration boundary conditions, like the “extended Bernoulli equation”. Multiply all terms by
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ρUl nl dA. nl is a unit vector which is normal to the integration area dA. The overall area integrated over is, for
example, the cross sectional area of a pipe or pipe fitting.

0 = ρUl nl dA
∂

∂xi

(
1
2UjUj +

P
ρ
+ k

)
dsi − ρ νUl nl dA

∂2Ui

∂x j∂x j

dsi

+ ρUl nl dA

ε +

1
2
∂〈u juiui〉
∂x j

− ν
∂2k

∂xi∂xi
+
∂Ui〈uiu j 〉

∂x j

−
1
ρ

∂〈uip〉
∂xi


dt . (9)

For the first term, note that
∂

∂xi
(· · · ) dsi is the change in the quantity inside of the parentheses along a

streamline, so it can be written as d (· · · ). For the second term, note that dsi = ti ds, where ti is a unit vector tangent
to the streamline. For the third term, note that dt = ds/

√
UmUm , where s is the arclength of the streamline. These

changes result in

0 = ρUl nld
(

1
2UjUj +

P
ρ
+ k

)
dA − ρ νUl nl ti

∂2Ui

∂x j∂x j

ds dA

+
ρUl nl
√

UmUm


ε +

1
2
∂〈u juiui〉
∂x j

− ν
∂2k

∂xi∂xi
+
∂Ui〈uiu j 〉

∂x j

−
1
ρ

∂〈uip〉
∂xi


ds dA. (10)

The previous result is simplified by noting that Ul/
√

UmUm = ti :

0 = ρUl nld
(

1
2UjUj +

P
ρ
+ k

)
dA − ρ νUl nl ti

∂2Ui

∂x j∂x j

ds dA

+ ρ tl nl

ε +

1
2
∂〈u juiui〉
∂x j

− ν
∂2k

∂xi∂xi
+
∂Ui〈uiu j 〉

∂x j

−
1
ρ

∂〈uip〉
∂xi


ds dA. (11)

Now, we make the approximation tlnl = 1, which means that the streamlines are normal to the surface on each
end of the streamtube. This is not satisfied in internal flows aside from long straight stretches of pipe, but it is
approximately satisfied. A consequence of this approximation is that Uini =

√
UiUi ≡ U. After this, we have

0 = ρUd
(

1
2UjUj +

P
ρ
+ k

)
dA − ρνUi

∂2Ui

∂x j∂x j

ds dA

+ ρ


ε +

1
2
∂〈u juiui〉
∂x j

− ν
∂2k

∂xi∂xi
+
∂Ui〈uiu j 〉

∂x j

−
1
ρ

∂〈uip〉
∂xi


ds dA. (12)

The viscous mean flow term can be decomposed as below, which follows from the product rule:

νUi
∂2Ui

∂x j∂x j

= ν
∂

∂x j

*.
,
Ui

∂Ui

∂x j

+/
-
− ν

*.
,

∂Ui

∂x j

+/
-

*.
,

∂Ui

∂x j

+/
-︸              ︷︷              ︸

εm

. (13)

The second term is the dissipation due to the mean flow, εm, as defined by Pope [7, p. 124]. Applying this
decomposition to equation 12 and simplifying the result returns

0 = ρUd
(

1
2UjUj +

P
ρ
+ k

)
dA + ρ


εm + ε − ν

∂

∂x j

*.
,
Ui

∂Ui

∂x j

+/
-

+
1
2
∂〈u juiui〉
∂x j

− ν
∂2k

∂xi∂xi
+
∂Ui〈uiu j 〉

∂x j

−
1
ρ

∂〈uip〉
∂xi


ds dA. (14)

Now integrate equation 14 over the volume of the streamtube, note that ds dA ≡ d–V , and use the kinetic energy
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coefficient α [26, p. 218] (α ≥ 1, with α = 1 for only a uniform velocity profile if all velocities are forward):

0 = ṁ


αU
2

2
+

P
ρ
+ k



2

1

+ ρ

∫
CS

∫
s


εm + ε − ν

∂

∂x j

*.
,
Ui

∂Ui

∂x j

+/
-

+
1
2
∂〈u juiui〉
∂x j

− ν
∂2k

∂xi∂xi
+
∂Ui〈uiu j 〉

∂x j

−
1
ρ

∂〈uip〉
∂xi


d–V . (15)

The averaging in the first term is averaging in the area normal to the streamlines, e.g., in a pipe flow under the
approximation previously mentioned, this is the plane of the pipe. All of the terms in the second term aside from
the dissipation terms go to zero at the walls after applying the divergence theorem, and applying the no-slip and

no-penetration boundary conditions (Ui and ui are zero at the boundaries). (If it is unclear,
∂ k
∂n
= 0 at the wall

due to k’s quadratic dependence on the velocity, where n is the normal direction to the wall.) Unfortunately, the
divergence theorem does not help at the inlet and outlet of the streamtube, as the terms of interest are not necessarily
zero. However, as a hypothesis they may be zero or otherwise small compared against the others, or possibly well
modeled similarly to the dissipation. The validity of this approximation may depend on where the control volume
ends. Under this approximation the turbulent Bernoulli equation is

0 =


αU
2

2
+

P
ρ
+ k



2

1

+
ρ

ṁ

∫
–V

(εm + ε) d–V . (16)

The deviation from the typical Bernoulli equation is generally called “loss”:

loss =
∑

ζ · 1
2U

2
= ∆k +

ρ

ṁ

∫
–V

(εm + ε) d–V . (17)

The energy “loss” is decomposed into three components: 1. ∆k, which is mean flow energy converted into
turbulent kinetic energy, 2. (ρ/ṁ)

∫
–V εm d–V , which is energy dissipated by the mean flow, and 3. (ρ/ṁ)

∫
–V ε d–V ,

which is energy dissipated by turbulence. To reiterate a point made earlier, Panton [5, p. 133] and Bird et al. [6,
p. 204] only include the term with εm, which Pope [7, p. 125] notes is generally negligible in turbulent flows.

Differential loss decomposition for pipe flows
A differential version of the energy loss decomposition for pipe flows can be useful. Recognize that in a pipe

flow ζ ≡
∫ x

0 ( f (s)/d) ds. Consequently, the loss can be written as (integrating from point 0 to point x)(∫ x

0

f (s)
d

ds
)
· 1

2U
2
= k (x) − k0 +

ρ

ṁ

∫ x

0
A(s)(εm + ε) ds. (18)

Differentiating this expression with respect to x returns

d
dx

(∫ x

0

f (s)
d

ds
)
· 1

2U
2
=

dk
dx
−
�
�
�dk0

dx
+
ρ

ṁ
d
dx

∫ x

0
A(s)(εm + ε) ds, and finally

f (x)U
2

2d
=

dk (x)
dx

+
ρA(x)

ṁ
(εm(x) + ε(x)). (19)

Turbulence modeling
Equation 17 is simple, but even with a known loss coefficient, k and ε can not be uniquely determined. A

turbulence model is needed to estimate quantities of interest. Two simple models are detailed. To reiterate, we are
are neglecting certain terms for simplicity. Future works should relax these approximations.

Dissipation fraction model
When modeling individual piping components, e.g., valves and fittings, the easiest model would simply assume

a certain fraction of the loss energy is dissipated. Presumably typical values of this “dissipation fraction” could be
tabulated alongside loss coefficients if it proves to be relatively universal for classes of valve and fitting geometries.
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Following equation 17, we define the dissipation fraction as

αε ≡
(ρ/ṁ)

∫
–V (εm + ε) d–V

ζ · 1
2U

2 which implies ∆k =
∑

(1 − αε ) · ζ · 1
2U

2
. (20)

αε can be assumed constant for a pipe system component. Note that αε is only bounded below by zero. There
is no obvious upper bound to the amount of dissipation. In some circumstances, e.g., where turbulence reduction is
desired, the amount of dissipation will exceed ζ · 1

2U
2, causing ∆k to be negative and αε to be greater than one.

Dissipation scaling model
A common scaling used to estimate turbulence dissipation is ε = Cε k3/2/Λ, where Λ is the integral length

scale [7, p. 244]. Assuming that the integral length scale is proportional to a characteristic diameter, for example, the
pipe diameter, the volume averaged dissipation can be modeled as εm + ε = Cε k

3/2
/d. This leads to the following

equation for ∆k if k in the dissipation model is taken as the inlet value, k1, which simplifies the computation:

ζ · 1
2U

2
= k2 − k1 +

Cε –Vcρ

ṁd
k

3/2
1 , (21)

for a single flow resistance between 1 and 2, where –Vc is the characteristic volume of the component. Unlike the
dissipation fraction approach, it is impossible to solve for the overall increase in the turbulent kinetic energy with a
simple sum. The model requires solving for k at each node in a pipe system.

Models for specific internal flow situations
Fully developed pipe flow

Equation 19 can be applied to the case of fully developed pipe flow. Here
dk
dx
= 0 and f is also a constant,

independent of the location. The dissipation scaling model leads to the equation†

f U
2

2d
=

Cε ρA
ṁd

k
3/2
FD , or, kFD = U

2
(

f
2Cε

)2/3
, which implies TuFD ≡

√
2kFD/3

U
=

√
2
3

(
f

2Cε

)1/3
. (22)

To test this theory, an experimental database for both rough and smooth pipes was compiled, selecting only
studies which measured all three velocity components [27–33] (17 points, 9 smooth, 8 rough). Fitting the theory with
least squares returns TuFD = 0.2458 f 1/3 (R2 = 0.9089). Fitting a general power law returns TuFD = 0.3655 f 0.4587

(R2 = 0.9753). Neglecting measurement error, the exponent with 95% error is 0.4587 ± 0.0401. The scaling
Tu ∝ f 1/3 is not consistent with this. A power closer to 1/2 seems justified. The scaling Tu ∝ f 1/2 would follow
from the assumption that k1/2 ∝ uτ . This discrepancy is likely due to the neglect of many terms when constructing
the model. It is interesting to note that the power is between the two theories, suggesting reality blends both physics.

One further observation from the correlation is that the Blasius friction factor law for smooth pipes, f =
0.316 Re−1/4, suggests that TuFD decreases as Re ≡ U0d/ν increases, contrary to many expectations. This trend is
consistent with experimental measurements at the centerline [28, p. 35, fig. 15].

Contracting nozzle
Contractions followed by cylindrical segments (e.g., figure 1) are the typical nozzle geometry in turbulent jet

breakup. To offer an alternative to Huh’s inaccurate model, we will apply RDT to the contraction and equation 19
to the cylindrical segment. Batchelor and Proudman [23, p. 94, equation 4.6] develop an approximation to RDT
for contractions, accurate if c & 2. Typically in internal flows u′ > v′ ≈ w′. If we assume that v′ = w′, then the
anisotropies b22 = b33 = b [7, p. 360]. For isotropic turbulence b = 0, and for fully developed pipe flows b ≈ −1/8.
We can then compute the overall turbulence intensity at the end of the contraction:

Tu2
c =

3
4

*
,

Tuin
c

+
-

2 

(
1
3 − 2b

)
[ln(4c3) − 1]
c2 + 2

(
b + 1

3

)
c


, (23)

†The plane averaged turbulence intensity defined as Tu ≡
√

2k/3/U , not averaging over u′/U as one might expect. Rather than plane
averaging the turbulence intensity directly, a new turbulence intensity is formed from the plane averaged turbulent kinetic energy per the definition
of the turbulence intensity. This is done so that Tu2

∝ k , which is convenient for energy conservation.
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where Tuin is the turbulence intensity at the nozzle inlet and Tuc is the turbulence intensity at the end of the
contraction. Using equation 19 for the nozzle orifice with the linearization k

3/2
≈ k · k

1/2
FD , we estimate that

Tu2
0 = Tu2

FD +
(
Tu2

c − Tu2
FD

)
exp *.

,
−

3Tu2
FD

f
L0
d0

+/
-
. (24)

This model has not been experimentally validated. We are not aware of any nozzle turbulence experimental data
where all of the model inputs (e.g., including inlet turbulence intensity, Tuin) are available. However, in contrast to
Huh’s model, this model is at least qualitatively correct in the limits of L0/d0. Comparison with data compiled by
Klein [19, p. 246, fig. 3] suggests that the model likely has the wrong concavity in k for small to moderate L0/d0 and
also underestimates the development length. A better model is needed. More detailed nozzle turbulence experiments
are also needed to validate both the contraction and cylindrical segment parts of any nozzle turbulence model.

Estimation of inlet turbulent kinetic energy
Models of this variety typically require the inlet turbulent kinetic energy. There are a few possibilities to estimate

this quantity: 1. Find the inlet turbulent kinetic energy from empirical measurements; 2. Select the inlet turbulent
kinetic energy to match other measured quantities (less desirable); 3. Assume the flow is fully developed at the inlet;
4. Assume the inlet turbulent kinetic energy is zero, which may be acceptable for laminar or essentially quiescent
entrances; or 5. Use standardized tabulated empirical values of turbulent kinetic energy. At present, these tables do
not exist, but it seems plausible that one could measure and compile values of turbulent kinetic energy at the outlet
for pumps and other common starting points.

Conclusions
While Huh’s model is inaccurate, relating k to the pressure drop in the nozzle is valid and has a long history.

Unfortunately, no simple trick like a force balance at the orifice walls can allow one to avoid turbulence modeling.
Using standard turbulence modeling approaches we developed equation 24, which can be used in place of Huh’s
model. However, equation 24 has not been validated. We recommend instead using CFD to determine k for now.

Appendix: The effect of recirculation zones

rb
2

rt

c
1 flow

Figure 2. Recirculation zone.

Earlier in this paper, the side boundaries of the streamtube
were assumed to be no-slip. This assumption is false when one or
more recirculation zones appear in the flow. Briefly, we’ll show
that recirculation zones bounded outside by no-slip boundaries
have the same effect as no-slip boundaries. In figure 2, the
solid line is a no-slip boundary, the dashed line is the boundary
(dividing streamline) of the central streamtube (denoted with c),
the dotted line from the left corner (point 1) to the large dot is the
inlet to the top of the recirculation zone (denoted with rt; also the
outlet of the bottom of the recirculation zone, denoted with rb),
and the dotted line from the large dot to the reattachment point
(point 2) is the rt outlet (rb inlet). Equation 15 can be decomposed into 0 = ∆c +

∫
in/out,c +

∫
slip,c +

∫
no-slip,c for c,

0 = ∆rt +
∫
in/out,rt +

∫
slip,rt +

∫
no-slip,rt for rt, and 0 = ∆rb +

∫
in/out,rb +

∫
slip,rb +

∫
no-slip,rb for rb. ∆ are the conservative

terms. The “in/out” integrals are the inlet and outlet integrals. The slip and no-slip integrals are the integrals over
surfaces with slip and no-slip boundaries, respectively. The terms

∫
no-slip,rt and

∫
slip,rb equal zero by construction.

Because rt and rb form a loop, ∆rt + ∆rb = 0. And because the inlet of rt equals the outlet of rb, and vice versa,∫
in/out,rt = −

∫
in/out,rb. The central streamtube can be connected to rt by noting that

∫
slip,c = −

∫
slip,rt. Combining

these and rearranging, we find that 0 = ∆c +
∫
in/out,c +

∫
no-slip,c +

∫
no-slip,rb for the central streamtube, indicating that

the recirculation zone is equivalent to the no-slip boundary on its periphery. If multiple recirculation zones separate
the central streamtube from the no-slip boundary, this procedure can be repeated multiple times with the same result.
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\abstract{
Estimating the turbulent kinetic energy at the nozzle outlet is necessary to model turbulent jet breakup. We identified errors in a model of nozzle turbulence developed by \citet{huh_diesel_1998} which made the model inaccurate. To develop an improved model, we derived a generalized form of the Bernoulli equation for non-cavitating flows. The equation can be used to estimate turbulent kinetic energy, $\overline{k}$, and dissipation, $\overline{\varepsilon}$, in internal flows given loss coefficients or friction factors and a turbulence model. The equation allows turbulent kinetic energy and dissipation to be estimated without computational fluid dynamics. The estimates can be used as-is where turbulent kinetic energy or dissipation are desired, or as a more accurate boundary condition for computational fluid dynamics. A model for fully developed pipe flow is developed and compared against experimental data. A nozzle turbulence model which could replace \citeauthor{huh_diesel_1998}'s is also developed, but the model has not been validated due to a lack of experimental data. \\[1em] Keywords: \keywords
}
% Turbulent kinetic energy is a frequently desired quantity in internal flows which can be difficult to measure and estimate. Dissipation of turbulent kinetic energy is less frequently desired. 

\section{Introduction and background}

Turbulent kinetic energy in internal flow systems can often only be found through computational fluid dynamics (CFD), because measuring turbulence quantities in internal flows is usually difficult. Reynolds averaged CFD of single components is presently tractable, but computationally expensive. Accurate CFD of complex piping systems in practice is difficult, if not prohibitively expensive. Further, one source of error in CFD is the specification of inlet turbulent kinetic energy and dissipation boundary conditions. Given these concerns, there is a need for a computationally tractable methodology to predict turbulent kinetic energy in internal flows. % computational fluid dynamics (CFD) or theoretical analyses; Theoretical analysis is limited to a few cases and not always accurate even in those cases. 

There's also an interest in extending the Bernoulli equation to more general contexts. There are two approaches to generalization. The first approach is to find paths other than streamlines where the Bernoulli integral is constant under more general conditions, e.g., in viscous flows. \citet{brutyan_bernoullis_1989} identify such paths for general steady viscous flows. The second approach is to determine how the Bernoulli integral varies along streamlines under more general conditions. Typically, this is only done for internal flows. \citet{grose_orifice_1983,synolakis_combining_1989} develop viscous corrections to the Bernoulli equation. A more common approach adds a term for energy ``lost'' along the flow path in internal flows. The equation has been called the ``mechanical energy balance'', the ``engineering Bernoulli equation'', or the ``extended Bernoulli equation''. The models for the lost energy are $\Delta p = \zeta \cdot \tfrac{1}{2} \overline{U}^2$ for pipe fittings (``minor loss'') and valves and $\Delta p = (f \, L / d) \cdot \tfrac{1}{2} \overline{U}^2$ for pipe segments (``major loss''). The lost energy is attributed to viscous dissipation by \citet[p.~133]{panton_incompressible_2013} and \citet[p.~204]{bird_transport_2002}. However, the previous derivations of the loss term are only valid for steady flows, precluding the possibility of anything one would call turbulence. \citet[p.~125]{pope_turbulent_2000} notes that the (laminar) mean flow dissipation term the previously studies highlight is generally negligible. Consequently, how the lost energy is distributed in a turbulent flow is unclear. A relationship between the loss and turbulence quantities like the turbulent kinetic energy and dissipation exists, and it will be detailed in this paper.

Past researchers have attempted to relate flow losses to turbulence quantities, without clear success. Most previous theories modeled turbulence reduction by screens as a function of the loss coefficient of the screen. \citet[p.~5]{loehrke_experiments_1972} suggested that the theories disagree with the data because the theories treat the screen as only a turbulence suppression device, and do not include any way for turbulence to be generated. Examining both screens and honeycombs, \citet{scheiman_comparison_1981-1} agree with that conclusion. \citet{groth_turbulence_1988} made the same suggestion and showed experimentally that the turbulence intensities immediately downstream of the screen are higher than that upstream of the screen, but the turbulence decays further downstream of the screen. \citeauthor{groth_turbulence_1988}'s measurements show that both turbulence generation and dissipation are factors.

For modeling screen turbulence, \citet[p.~471R]{baines_investigation_1951} proposed an equation similar the Bernoulli equation along a streamline with additional terms for turbulent kinetic energy and dissipation. No derivation was provided. The equation was justified by stating it represents energy conservation, however, this is implausible as there are no terms for energy transfer between streamlines. No link between this equation and flow losses was made. Focusing on more general hydraulic resistances, \citet{nikitin_turbulent_1980} developed models for the maximum RMS pressure $p^\prime$ using the friction factor or loss coefficient in pipe and general hydraulic resistances. \citeauthor{nikitin_turbulent_1980} used dimensional analysis, not energy conservation, to determine $p^\prime$, and the equations developed are valid only if the inlets have negligible turbulence.
% DONE: Cite nikitin_turbulent_1980 in the review. The paper examines maximum p^\prime after a pipe fitting/element. The results seem valid only if p^\prime is small at the inlet. Nice heuristic in this paper: The larger the separation zone, the larger \zeta.

\begin{wrapfigure}{r}{0.30\textwidth}
\vspace{-1.0em}
\centering
\input{nozzle-contraction.pdf_t}
\caption{Nozzle geometry.}
\label{fig:nozzle geometry}
\end{wrapfigure}
%\vspace{-1.0em}
Independent from the attempts to model turbulence through screens or general hydraulic resistances, researchers interested in liquid jet breakup developed simplified models to estimate turbulent kinetic energy at the outlet of a nozzle. Early models were developed by \citet{natanzon_o_1938-1}, \citet{tsyapko_o_1968}, and \citet[p.~111]{jackson_two-phase_1983}. More notable, however, is the model of \citeauthor{huh_diesel_1998}~\cite{huh_phenomenological_1991,huh_diesel_1998} (abbreviated as ``Huh's model'' here). In Huh's model, the turbulent kinetic energy at the nozzle exit can be estimated with the equation %\footnote{For more detail, see \citet[appendix~A,~p.~59]{trinh_modeling_2007} and \citet[pp.~81--84]{kralj_numerical_1996}.}
\begin{equation}
   \overline{k}_0 = \frac{\overline{U}_0^2}{8 L_0/d_0} \left[\frac{1}{C_\text{d}^2} - \zeta_\text{c} - \left(1 - c^{-2}\right)\right] \label{huh equation}
\end{equation} % see 2016-03-10-to-2016-04-19.pdf pp. 4--5 for derivation of this, including many details about where it goes wrong.
where $\overline{k}_0$ is the plane averaged turbulent kinetic energy at the nozzle exit, $\overline{U}_0$ is the (plane averaged) velocity through the nozzle orifice, $L_0$ is the nozzle orifice length, $d_0$ is the nozzle orifice diameter, $C_\text{d}$ is the discharge coefficient of the nozzle, $\zeta_\text{c}$ is the contraction loss coefficient, and $c \equiv A_\text{in} / A_0 = {(d_\text{in} / d_0)}^2$ is the area contraction ratio of the nozzle. See \figref{fig:nozzle geometry} for an illustration of a conical nozzle with a cylindrical orifice using the previous notation. % DONE: What is the definition of the contraction ratio here? Area or diameter? Greater or less than 1? ==> Huh defined his contraction ratio as the area ratio that's the inverse of what I have here. I used this definition because it seems more common.
% DONE: $\zeta_\text{c}$ is the loss coefficient associated with the nozzle contraction ==> see 2016-03-10-to-2016-04-19.pdf pp. 4--5

This model has two major problems evident by inspection. First, in this model the nozzle \textit{exit} turbulent kinetic energy is not a function of the nozzle \textit{inlet} turbulent kinetic energy. This is inconsistent with the evidence that strong turbulent kinetic energy at the nozzle inlet can affect the stability of a liquid jet~\cite{ervine_effect_1980,mckeogh_air_1980}. Second, this equation implies that turbulent kinetic energy grows arbitrarily large as $L_0/d_0$ decreases to zero, and that turbulent kinetic energy goes to zero as $L_0/d_0$ grows arbitrarily large. Both are false. \citet[p.~246, fig.~3]{klein_review:_1981} reviews past measurements of turbulent kinetic energy as a function of development length. For small $L_0/d_0$, $k$ approaches the inlet value, and as $L_0/d_0$ increases to infinity (i.e., the flow becomes fully developed), $k$ goes to a value determined by the friction factor for fully developed flow. The latter value is independent of the inlet turbulent kinetic energy. Further, if $k$ grew arbitrarily large as $L_0/d_0$ decreased, this would violate energy conservation. $k$ increasing would also imply that the stability of a liquid jet would be worse for shorter nozzles, but typically the opposite is true~\cite{arai_break-up_1985}. % More than just getting the limiting cases wrong, Huh has the wrong trend with L_0/d_0. You would intuitively expect Tu to asymptotically increase with L_0/d_0 to the fully developed value if Tu_0 were less than the fully developed value, or if Tu_0 were very high, asymptotically decrease to the fully developed value.
% MAYBE: From handwritten copy: add more citations for the point you cited Arai for.

These problems are caused by an error made in the derivation of \eqref{huh equation}. \citeauthor{huh_diesel_1998} use a force balance in an attempt to relate the turbulent kinetic energy to the pressure drop across the nozzle orifice. Presumably the ``turbulent stress'' used in the model is the Reynolds shear stress ($\savg{u v}$ if one divides by the liquid density), but this is not the same as the turbulent kinetic energy ($k$), what is desired in the model. The model implicitly assumes the two are the same or at least proportional. One can relate $\savg{u v}$ to the turbulent kinetic energy via the stress-intensity ratio, $|\savg{u v} / k|$, found to be about $0.3$ in many shear flows~\cite[pp.~116, 121, 126, 138]{durbin_statistical_2010}. However, this option is not viable, as using wall friction requires taking the force balance at the orifice walls. Both $\savg{u v}$ and $k$ are zero at smooth walls due to the no-slip and no-penetration conditions~\cite[p.~269]{pope_turbulent_2000}. The stress at a smooth wall comes entirely from the viscous component\footnote{That is not true for the special case of rough walls, but in this case one would still need to know the viscous component of the wall stress, which is not generally known. The link between the plane average value of $\savg{u v}$ (to find $\overline{k}$) and the value of $\savg{u v}$ at the wall is also unclear. There is no simple link between $\tau_\text{w}$ and $\overline{k}$ even for rough pipes. In the remainder of this paper, we assume that all fluctuations are zero at the wall.}. Finally, the constant stress-intensity ratio approximation is not particularly accurate~\cite{alshamani_correlations_1978}.

% DONE: Near a rough wall, the \savg{u v} is not zero due to pressure fluctuations. Idea from Randy McDermott. Discuss this more, possibly in a footnote. In a rough wall, can you relate the surface shear stress and k or \savg{u v}? ==> You likely need a specified profile for \savg{u v} to do this. Too much work and not likely to generalize well.

Further, $\overline{k}$ is determined solely by the nozzle orifice walls in Huh's model, explaining why inlet turbulent kinetic energy does not factor into the model. In addition to ignoring the effect of inlet $\overline{k}$, this implies that the contraction does not change the turbulent kinetic energy. The effects of contractions on turbulent kinetic energy and anisotropy are well known~\cite{batchelor_effect_1954,ramjee_influence_1976,han_effect_2005}. Rapid distortion theory (RDT) can model these effects. %Another problem with the model is that orifice entrance effects could make $f$ vary spatially, though these effects are assumed to be minor. ==> Actually, given that Huh never involves $f$, this is fine. Huh calculates the overall effective pressure drop in a round-about way.

The failures of previous models prompted the development of a more rigorous approach which also uses empirical loss coefficients. %Ultimately, we do not develop a single equation which is a replacement for \eqref{huh equation}, however, we provide the tools needed for future researchers to develop problem-specific algebraic internal flow turbulence models using empirical loss coefficients.

\section{Derivation of the turbulent Bernoulli equation and relationship between loss and turbulence quantities}

We start with a standard derivation of the Bernoulli theorem, albeit from the Reynolds averaged equations rather than the instantaneous equations. We depart from the standard derivation when we take the new term for the work done by the Reynolds stress, and decompose that term into the production of turbulent kinetic energy and a turbulent flux. This returns an equation including terms for energy transfer between streamlines. Algebraic manipulation and integration over the volume of the internal flow path returns a relationship between flow losses, $k$, and $\varepsilon$. For brevity, the ensemble mean velocity in the Reynolds decomposition will be denoted with a capital $U_i$ rather than $\savg{U_i}$, and the fluctuating terms will be denoted with lowercase $u_i$. %After applying the divergence theorem and boundary conditions (no-slip or penetration), we obtain a somewhat predictable equation decomposing the energy loss into a change in turbulent kinetic energy, and dissipation due to the mean flow and turbulence.

\subsection{Differential turbulent Bernoulli equation for a streamline}

Start with the Reynolds averaged Navier-Stokes equation in Stokes form and consider the statistically stationary case (no change in the mean with time)~\cite[p.~23,~p.~86]{pope_turbulent_2000}:
\vspace{-0.5em}
\begin{equation}
   \cancel{\dpd{U_i}{t}} + \dpd{\tfrac{1}{2} U_j U_j}{x_i} - \epsilon_{ijk} U_j \omega_k = -\frac{1}{\rho} \dpd{P}{x_i} + \nu \dmd{U_i}{2}{x_j}{}{x_j}{} - \dpd{\savg{u_i u_j}}{x_j}.
\end{equation}

Rewrite the previous equation so that only $\epsilon_{ijk} U_j \omega_k$ is on one side, and the remaining terms are on the other:
\begin{equation}
   \epsilon_{ijk} U_j \omega_k = \dpd{}{x_i}\left(\tfrac{1}{2} U_j U_j + \frac{P}{\rho}\right) + \dpd{\savg{u_i u_j}}{x_j} - \nu \dmd{U_i}{2}{x_j}{}{x_j}{}.
\end{equation}

Consider a vector $s_i$ which is in the direction of a streamline at a point in space.  Multiply the previous equation by a differential element of this vector:
\begin{equation}
   \cancel{\epsilon_{ijk} U_j \omega_k \dif s_i} = \dpd{}{x_i} \left(\tfrac{1}{2} U_j U_j + \frac{P}{\rho}\right) \dif s_i + \left(\dpd{\savg{u_i u_j}}{x_j} - \nu \dmd{U_i}{2}{x_j}{}{x_j}{}\right) \dif s_i.
\end{equation}

The cross product term has no component in the direction of $U_i$, which is the same as $s_i$, so $\epsilon_{ijk} U_j \omega_k \dif s_i$ is zero. Note that the local differential length element along a streamline can be related to the local time-averaged velocity vector by $\dif s_i = U_i \dif t$. This is done for the Reynolds stress term only:
\begin{equation}
   0 = \dpd{}{x_i} \left(\tfrac{1}{2} U_j U_j + \frac{P}{\rho}\right) \dif s_i - \nu \dmd{U_i}{2}{x_j}{}{x_j}{} \dif s_i + U_i \dpd{\savg{u_i u_j}}{x_j} \dif t. \label{reynolds averaged differential bernoulli}
\end{equation}

Now, note that the following decomposition is a consequence of the product rule:
\begin{equation}
   U_i \dpd{\savg{u_i u_j}}{x_j} = \dpd{U_i \savg{u_i u_j}}{x_j} \underbrace{-\savg{u_i u_j} \dpd{U_i}{x_j}}_\text{production}.
\end{equation}

The second term is recognized as the production of turbulent kinetic energy. Substituting the expression for turbulent kinetic energy~\cite[p.~49]{durbin_statistical_2010} into the result above returns
\begin{equation}
   U_i \dpd{\savg{u_i u_j}}{x_i} = U_i \dpd{k}{x_i} + \underbrace{\nu \avg{\dpd{u_i}{x_j} \dpd{u_j}{x_i}}}_{\displaystyle \varepsilon} + \frac{1}{2} \dpd{\savg{u_j u_i u_i}}{x_j} - \nu \dmd{k}{2}{x_i}{}{x_i}{} + \dpd{U_i \savg{u_i u_j}}{x_j} - \frac{1}{\rho} \dpd{\savg{u_i p}}{x_i}. \label{work decomposition}
\end{equation}

The previous equation can be used to see how turbulent kinetic energy changes along a streamline. Aside from the first and third terms, everything else is between streamlines. Later, when we average over the projected area of the pipe, the other terms go to zero at the walls as there is no transfer between the pipe and the walls due to the no-slip and no-penetration boundary conditions. These terms may need to be kept for inlets and outlets, however.

Substituting the result from \eqref{work decomposition} into \eqref{reynolds averaged differential bernoulli} returns (after application of $U_i = \dif s_i / \dif t$ to the turbulent kinetic energy derivative and some rearrangement)
\begin{align}
   0 &= \dpd{}{x_i} \left(\tfrac{1}{2} U_j U_j + \frac{P}{\rho} + k\right) \dif s_i - \nu \dmd{U_i}{2}{x_j}{}{x_j}{} \dif s_i \notag \\
   &\qquad + \bigg[\varepsilon + \frac{1}{2} \dpd{\savg{u_j u_i u_i}}{x_j} - \nu \dmd{k}{2}{x_i}{}{x_i}{} + \dpd{U_i \savg{u_i u_j}}{x_j} - \frac{1}{\rho} \dpd{\savg{u_i p}}{x_i} \bigg] \dif t. \label{streamline bernoulli}
\end{align}

\subsection{Turbulent Bernoulli equation for a streamtube with no-slip and no-penetration boundary conditions}

\Eqref{streamline bernoulli} is valid along a particular streamline, but there are many terms which need to be modeled, limiting its utility. Consequently, we seek to develop a version for a streamtube applicable in internal flows where there are no-slip and no-penetration boundary conditions, like the ``extended Bernoulli equation''. Multiply all terms by $\rho \, U_l \, n_l \, \dif A$. $n_l$ is a unit vector which is normal to the integration area $\dif A$. The overall area integrated over is, for example, the cross sectional area of a pipe or pipe fitting.
%The result here is also applicable in external flows if the far-field boundaries are placed far away such that the same boundary conditions apply.
\begin{align}
   0 &= \rho \, U_l \, n_l \, \dif A \dpd{}{x_i} \left(\tfrac{1}{2} U_j U_j + \frac{P}{\rho} + k\right) \dif s_i - \rho \, \nu \, U_l \, n_l \, \dif A \dmd{U_i}{2}{x_j}{}{x_j}{} \dif s_i \notag \\
   &\qquad + \rho \, U_l \, n_l \, \dif A \left[\varepsilon + \frac{1}{2} \dpd{\savg{u_j u_i u_i}}{x_j} - \nu \dmd{k}{2}{x_i}{}{x_i}{} + \dpd{U_i \savg{u_i u_j}}{x_j} - \frac{1}{\rho} \dpd{\savg{u_i p}}{x_i}\right] \dif t.
\end{align}

For the first term, note that $\displaystyle \dpd{}{x_i} \left(\cdots\right) \dif s_i$ is the change in the quantity inside of the parentheses along a streamline, so it can be written as $\displaystyle d \left(\cdots\right)$. For the second term, note that $\dif s_i = t_i \dif s$, where $t_i$ is a unit vector tangent to the streamline. For the third term, note that $\dif t = \dif s / \sqrt{U_m U_m}$, where $s$ is the arclength of the streamline. These changes result in
\begin{align}
   0 &= \rho \, U_l \, n_l d \left(\tfrac{1}{2} U_j U_j + \frac{P}{\rho} + k\right) \dif A - \rho \, \nu \, U_l \, n_l \, t_i \dmd{U_i}{2}{x_j}{}{x_j}{} \dif s \, \dif A \notag \\
   &\qquad + \frac{\rho \, U_l \, n_l}{\sqrt{U_m U_m}} \left[\varepsilon + \frac{1}{2} \dpd{\savg{u_j u_i u_i}}{x_j} - \nu \dmd{k}{2}{x_i}{}{x_i}{} + \dpd{U_i \savg{u_i u_j}}{x_j} - \frac{1}{\rho} \dpd{\savg{u_i p}}{x_i}\right] \dif s \, \dif A.
\end{align}

The previous result is simplified by noting that $U_l / \sqrt{U_m U_m} = t_i$:
\begin{align}
   0 &= \rho \, U_l \, n_l d \left(\tfrac{1}{2} U_j U_j + \frac{P}{\rho} + k\right) \dif A - \rho \, \nu \, U_l \, n_l \, t_i \dmd{U_i}{2}{x_j}{}{x_j}{} \dif s \, \dif A \notag \\
   &\qquad + \rho \, t_l \, n_l \left[\varepsilon + \frac{1}{2} \dpd{\savg{u_j u_i u_i}}{x_j} - \nu \dmd{k}{2}{x_i}{}{x_i}{} + \dpd{U_i \savg{u_i u_j}}{x_j} - \frac{1}{\rho} \dpd{\savg{u_i p}}{x_i}\right] \dif s \, \dif A.
\end{align}

Now, we make the approximation $t_l n_l = 1$, which means that the streamlines are normal to the surface on each end of the streamtube. This is not satisfied in internal flows aside from long straight stretches of pipe, but it is approximately satisfied. A consequence of this approximation is that $U_i n_i = \sqrt{U_i U_i} \equiv U$. After this, we have % I wrote U_i = t_i U on an early scan of this paper here.
\begin{align}
   0 &= \rho \, U d \left(\tfrac{1}{2} U_j U_j + \frac{P}{\rho} + k\right) \dif A - \rho \nu U_i \dmd{U_i}{2}{x_j}{}{x_j}{} \dif s \, \dif A \notag \\
   &\qquad + \rho \left[\varepsilon + \frac{1}{2} \dpd{\savg{u_j u_i u_i}}{x_j} - \nu \dmd{k}{2}{x_i}{}{x_i}{} + \dpd{U_i \savg{u_i u_j}}{x_j} - \frac{1}{\rho} \dpd{\savg{u_i p}}{x_i}\right] \dif s \, \dif A. \label{before mean dissipation decomposition}
\end{align}

The viscous mean flow term can be decomposed as below, which follows from the product rule:
\begin{equation}
   \nu U_i \dmd{U_i}{2}{x_j}{}{x_j}{} = \nu \dpd{}{x_j} \left(U_i \dpd{U_i}{x_j}\right) - \underbrace{\nu \left(\dpd{U_i}{x_j}\right) \left(\dpd{U_i}{x_j}\right)}_{\displaystyle \varepsilon_\text{m}}.
\end{equation}

The second term is the dissipation due to the mean flow, $\varepsilon_\text{m}$, as defined by \citet[p.~124]{pope_turbulent_2000}. Applying this decomposition to \eqref{before mean dissipation decomposition} and simplifying the result returns
\begin{align}
   0 &= \rho \, U d \left(\tfrac{1}{2} U_j U_j + \frac{P}{\rho} + k\right) \dif A + \rho \vast[\varepsilon_\text{m} + \varepsilon - \nu \dpd{}{x_j} \left(U_i \dpd{U_i}{x_j}\right) \notag \\
   &\qquad + \frac{1}{2} \dpd{\savg{u_j u_i u_i}}{x_j} - \nu \dmd{k}{2}{x_i}{}{x_i}{} + \dpd{U_i \savg{u_i u_j}}{x_j} - \frac{1}{\rho} \dpd{\savg{u_i p}}{x_i}\vast] \dif s \, \dif A. \label{after mean dissipation decomposition}
\end{align}

Now integrate \eqref{after mean dissipation decomposition} over the volume of the streamtube, note that $\dif s \, \dif A \equiv \dif \Vol$, and use the kinetic energy coefficient $\alpha$~\cite[p.~218]{benedict_fundamentals_1980} ($\alpha \geq 1$, with $\alpha = 1$ for only a uniform velocity profile if all velocities are forward):
\begin{align}
   0 &= \dot{m} {\left[\frac{\alpha \overline{U}^2}{2} + \frac{\overline{P}}{\rho} + \overline{k}\right]}_1^2 + \rho \int_\text{CS} \int_\text{s} \vast[\varepsilon_\text{m} + \varepsilon - \nu \dpd{}{x_j} \left(U_i \dpd{U_i}{x_j}\right) \notag \\
   &\qquad + \frac{1}{2} \dpd{\savg{u_j u_i u_i}}{x_j} - \nu \dmd{k}{2}{x_i}{}{x_i}{} + \dpd{U_i \savg{u_i u_j}}{x_j} - \frac{1}{\rho} \dpd{\savg{u_i p}}{x_i}\vast] \dif \Vol. \label{full integral}
\end{align}

The averaging in the first term is averaging in the area normal to the streamlines, e.g., in a pipe flow under the approximation previously mentioned, this is the plane of the pipe. All of the terms in the second term aside from the dissipation terms go to zero \textit{at the walls} after applying the divergence theorem, and applying the no-slip and no-penetration boundary conditions ($U_i$ and $u_i$ are zero at the boundaries). (If it is unclear, $\displaystyle \dpd{k}{n} = 0$ at the wall due to $k$'s quadratic dependence on the velocity, where $n$ is the normal direction to the wall.) Unfortunately, the divergence theorem does not help at the inlet and outlet of the streamtube, as the terms of interest are not necessarily zero. However, as a hypothesis they may be zero or otherwise small compared against the others, or possibly well modeled similarly to the dissipation. The validity of this approximation may depend on where the control volume ends. Under this approximation the turbulent Bernoulli equation is % LATER: Looked like I tried a scaling estimate of the magnitude of each term in EPSON010.pdf %quadratic dependence: \cite[p.~128]{durbin_statistical_2010}
% Old: If it is unclear, $\displaystyle \dpd{k}{n} = 0$ at the wall due to $k$'s quadratic dependence on the velocity, where $n$ is the normal direction to the wall:
%\begin{equation}
   %\dpd{k}{n} = \dpd{(\tfrac{1}{2} u_i u_i)}{n} = \frac{1}{2} \cdot 2 u_i \dpd{u_i}{n} = u_i \dpd{u_i}{n} = 0 \quad \text{because} \quad u_i = 0 \quad \text{at the wall}.
%\end{equation}
\begin{equation}
   0 = {\left[\frac{\alpha \overline{U}^2}{2} + \frac{\overline{P}}{\rho} + \overline{k}\right]}_1^2 + \frac{\rho}{\dot{m}} \int_{\Volsub} (\varepsilon_\text{m} + \varepsilon) \dif \Vol.
\end{equation}

The deviation from the typical Bernoulli equation is generally called ``loss'':
\begin{equation}
   \text{loss} = \sum \zeta \cdot \tfrac{1}{2} \overline{U}^2 = \Delta \overline{k} + \frac{\rho}{\dot{m}} \int_{\Volsub} (\varepsilon_\text{m} + \varepsilon) \dif \Vol. \label{loss breakdown}
\end{equation}

The energy ``loss'' is decomposed into three components
\begin{enumerate*}[1.,before=\unskip{: },itemjoin={{, }},itemjoin*={{, and }}]
   \item $\Delta \overline{k}$, which is mean flow energy converted into turbulent kinetic energy
   \item $\textstyle (\rho / \dot{m}) \int_{\Volsub} \varepsilon_\text{m} \, \dif \Vol$, which is energy dissipated by the mean flow
   \item $\textstyle (\rho / \dot{m}) \int_{\Volsub} \varepsilon \, \dif \Vol$, which is energy dissipated by turbulence.
\end{enumerate*}
To reiterate a point made earlier, \citet[p.~133]{panton_incompressible_2013} and \citet[p.~204]{bird_transport_2002} only include the term with $\varepsilon_\text{m}$, which \citet[p.~125]{pope_turbulent_2000} notes is generally negligible in turbulent flows.

\subsection{Differential loss decomposition for pipe flows}

A differential version of the energy loss decomposition for pipe flows can be useful. Recognize that in a pipe flow $\textstyle \zeta \equiv \int_0^x (f(s) / d) \dif s$. Consequently, the loss can be written as (integrating from point $0$ to point $x$)
\begin{equation}
   \left(\int_0^x \frac{f(s)}{d} \dif s\right) \cdot \tfrac{1}{2} \overline{U}^2 = \overline{k}(x) - \overline{k}_0 + \frac{\rho}{\dot{m}} \int_0^x A(s) (\overline{\varepsilon_\text{m} + \varepsilon}) \dif s.
\end{equation}

Differentiating this expression with respect to $x$ returns
\begin{align}
   \dod{}{x} \left(\int_0^x \frac{f(s)}{d} \dif s\right) \cdot \tfrac{1}{2} \overline{U}^2 &= \dod{\overline{k}}{x} - \cancel{\dod{\overline{k}_0}{x}} + \frac{\rho}{\dot{m}} \dod{}{x} \int_0^x A(s) (\overline{\varepsilon_\text{m} + \varepsilon}) \dif s, \ \text{and finally} \notag \\
   \frac{f(x) \overline{U}^2}{2 d} &= \dod{\overline{k}(x)}{x} + \frac{\rho A(x)}{\dot{m}} (\overline{\varepsilon_\text{m}(x) + \varepsilon(x)}). \label{differential loss equation}
\end{align}

%Note that no assumptions regarding isotropy of the flow were made in the previous derivations.

\section{Turbulence modeling}

\Eqref{loss breakdown} is simple, but even with a known loss coefficient, $k$ and $\varepsilon$ can not be uniquely determined. A turbulence model is needed to estimate quantities of interest. Two simple models are detailed. To reiterate, we are are neglecting certain terms for simplicity. Future works should relax these approximations.

%Additionally, if the mean flow quantities are accurately predicted by a loss coefficient, less is modeled by the turbulence model. \Eqref{loss breakdown} can be viewed as an empirical alternative to approaches which specify the Reynolds stress, e.g., a turbulent viscosity model. These models consequently are semi-empirical.
% This should result in greater accuracy for the semi-empirical approach developed here when compared against computational fluid dynamics.

%Why this approach might be accurate:
%1. More empirical, due to replacing Reynolds stress model with empirical data.
%2. It is easier to predict an averaged (global) quantity than a point quantity. (Overall energy conservation.)

\subsection{Dissipation fraction model} % (\citet[p.~582]{he_effect_1995} develop a similar fraction for turbulent kinetic energy rather than dissipation as a measure of how efficiently turbulence is generated.)

When modeling individual piping components, e.g., valves and fittings, the easiest model would simply assume a certain fraction of the loss energy is dissipated. Presumably typical values of this ``dissipation fraction'' could be tabulated alongside loss coefficients if it proves to be relatively universal for classes of valve and fitting geometries. Following \eqref{loss breakdown}, we define the dissipation fraction as
\begin{equation}
   \alpha_\varepsilon \equiv \frac{(\rho / \dot{m}) \int_{\Volsub} (\varepsilon_\text{m} + \varepsilon) \dif \Vol}{\zeta \cdot \tfrac{1}{2} \overline{U}^2} \quad \text{which implies} \quad \Delta \overline{k} = \sum (1 - \alpha_\varepsilon) \cdot \zeta \cdot \tfrac{1}{2} \overline{U}^2.
\end{equation}

$\alpha_\varepsilon$ can be assumed constant for a pipe system component. Note that $\alpha_\varepsilon$ is only bounded below by zero. There is no obvious upper bound to the amount of dissipation. In some circumstances, e.g., where turbulence reduction is desired, the amount of dissipation will exceed $\zeta \cdot \tfrac{1}{2} \overline{U}^2$, causing $\Delta \overline{k}$ to be negative and $\alpha_\varepsilon$ to be greater than one. %The upper bound seen in \eqref{k inequality} is the special case where $\alpha_\varepsilon = 0$.

\subsection{Dissipation scaling model}
\label{dissipation scaling model}

A common scaling used to estimate turbulence dissipation is $\varepsilon = C_\varepsilon k^{3/2} / \Lambda$, where $\Lambda$ is the integral length scale~\cite[p.~244]{pope_turbulent_2000}. Assuming that the integral length scale is proportional to a characteristic diameter, for example, the pipe diameter, the volume averaged dissipation can be modeled as $\overline{\varepsilon_\text{m} + \varepsilon} = C_\varepsilon \overline{k}^{3/2} / d$. This leads to the following equation for $\Delta \overline{k}$ if $\overline{k}$ in the dissipation model is taken as the inlet value, $\overline{k}_1$, which simplifies the computation: % I did cite vassilicos_dissipation_2015 at first for the \varepsilon scaling, but I switched to Pope to save space.
\begin{equation}
   \zeta \cdot \tfrac{1}{2} \overline{U}^2 = \overline{k}_2 - \overline{k}_1 + \frac{C_\varepsilon \Vol_\text{c} \rho}{\dot{m} d} \overline{k}_1^{3/2},
\end{equation}
for a single flow resistance between 1 and 2, where $\Vol_\text{c}$ is the characteristic volume of the component. Unlike the dissipation fraction approach, it is impossible to solve for the overall increase in the turbulent kinetic energy with a simple sum. The model requires solving for $\overline{k}$ at each node in a pipe system.

%\subsection{Empirical measurements of and correlations for $k$}

%\section{Comparison with experimental data}
\section{Models for specific internal flow situations}

% Flow straighteners
% farell_experiments_1996

% Screens
% farell_experiments_1996

% orifice data:
% http://onlinelibrary.wiley.com/doi/10.1002/aic.690390503/abstract
% http://www.sciencedirect.com/science/article/pii/095559869190019N

% valve data:
% http://www.se.put.poznan.pl/fcee/2006.07/full/fcee_2006-07_381-395_investigations_of_butterfly_control_valve.pdf
% http://docs.lib.purdue.edu/icec/917

\subsection{Fully developed pipe flow}

\Eqref{differential loss equation} can be applied to the case of fully developed pipe flow. Here $\displaystyle \dod{k}{x} = 0$ and $f$ is also a constant, independent of the location. The dissipation scaling model leads to the equation\footnote{The plane averaged turbulence intensity defined as $\overline{\Tu} \equiv \sqrt{2 \overline{k} / 3} / \overline{U}$, not averaging over $u^\prime / \overline{U}$ as one might expect. Rather than plane averaging the turbulence intensity directly, a new turbulence intensity is formed from the plane averaged turbulent kinetic energy per the definition of the turbulence intensity. This is done so that $\overline{\Tu}^2 \varpropto \overline{k}$, which is convenient for energy conservation.}
\begin{equation}
   \frac{f \overline{U}^2}{2 d} = \frac{C_\varepsilon \rho A}{\dot{m} d} \overline{k}_\text{FD}^{3/2}, \quad \text{or,} \quad \overline{k}_\text{FD} = \overline{U}^2 {\left(\frac{f}{2 C_\varepsilon}\right)}^{2/3}, \quad \text{which implies} \quad \overline{\Tu}_\text{FD} \equiv \frac{\sqrt{2 \overline{k}_\text{FD} / 3}}{\overline{U}} = \sqrt{\frac{2}{3}} {\left(\frac{f}{2 C_\varepsilon}\right)}^{1/3}.
\end{equation}

To test this theory, an experimental database for both rough and smooth pipes was compiled, selecting only studies which measured all three velocity components~\cite{laufer_structure_1954,sandborn_experimental_1955,robertson_study_1965,patel_reynolds_1968,gow_fully-developed_1969,powe_turbulence_1970,lawn_determination_1971} (17 points, 9 smooth, 8 rough). Fitting the theory with least squares returns $\overline{\Tu}_\text{FD} = 0.2458 f^{1/3}$ ($R^2 = 0.9089$). Fitting a general power law returns $\overline{\Tu}_\text{FD} = 0.3655 f^{0.4587}$ ($R^2 = 0.9753$). Neglecting measurement error, the exponent with 95\% error is $0.4587 \pm 0.0401$. The scaling $\overline{\Tu} \varpropto f^{1/3}$ is not consistent with this. A power closer to $1/2$ seems justified. The scaling $\overline{\Tu} \varpropto f^{1/2}$ would follow from the assumption that $k^{1/2} \varpropto u_\tau$. This discrepancy is likely due to the neglect of many terms when constructing the model. It is interesting to note that the power is between the two theories, suggesting reality blends both physics.

One further observation from the correlation is that the Blasius friction factor law for smooth pipes, $f = 0.316\,\Re^{-1/4}$, suggests that $\overline{\Tu}_\text{FD}$ decreases as $\Re \equiv \overline{U}_0 d / \nu$ increases, contrary to many expectations. This trend is consistent with experimental measurements at the centerline~\cite[p.~35,~fig.~15]{sandborn_experimental_1955}.

% figure: (space permitting) f vs. Tu correlation

%\subsection{Rough-to-smooth pipe flow}

\subsection{Contracting nozzle}

Contractions followed by cylindrical segments (e.g.,~\figref{fig:nozzle geometry}) are the typical nozzle geometry in turbulent jet breakup. To offer an alternative to Huh's inaccurate model, we will apply RDT to the contraction and \eqref{differential loss equation} to the cylindrical segment. \citet[p.~94,~equation~4.6]{batchelor_effect_1954} develop an approximation to RDT for contractions, accurate if $c \gtrsim 2$. Typically in internal flows $u^\prime > v^\prime \approx w^\prime$. If we assume that $v^\prime = w^\prime$, then the anisotropies $b_{22} = b_{33} = b$~\cite[p.~360]{pope_turbulent_2000}. For isotropic turbulence $b = 0$, and for fully developed pipe flows $b \approx -1/8$. We can then compute the overall turbulence intensity at the end of the contraction:
\begin{equation}
   \overline{\Tu}_\text{c}^2 = \frac{3}{4} {\left(\frac{\overline{\Tu}_\text{in}}{c}\right)}^2 \left[\frac{\left(\tfrac{1}{3} - 2 b\right) [\ln(4 c^3) - 1]}{c^2} + 2 \left(b + \tfrac{1}{3}\right) c\right], \label{RDT}
\end{equation}
where $\overline{\Tu}_\text{in}$ is the turbulence intensity at the nozzle inlet and $\overline{\Tu}_\text{c}$ is the turbulence intensity at the end of the contraction. Using \eqref{differential loss equation} for the nozzle orifice with the linearization $\overline{k}^{3/2} \approx \overline{k} \cdot \overline{k}_\text{FD}^{1/2}$, we estimate that
\begin{equation}
   \overline{\Tu}_0^2 = \overline{\Tu}_\text{FD}^2 + \left(\overline{\Tu}_\text{c}^2 - \overline{\Tu}_\text{FD}^2\right) \exp\left(-\frac{3 \overline{\Tu}_\text{FD}^2}{f} \frac{L_0}{d_0}\right). \label{nozzle Tu}
\end{equation}
This model has not been experimentally validated. We are not aware of any nozzle turbulence experimental data where all of the model inputs (e.g., including inlet turbulence intensity, $\overline{\Tu}_\text{in}$) are available. However, in contrast to Huh's model, this model is at least qualitatively correct in the limits of $L_0/d_0$. Comparison with data compiled by \citet[p.~246, fig.~3]{klein_review:_1981} suggests that the model likely has the wrong concavity in $\overline{k}$ for small to moderate $L_0/d_0$ and also underestimates the development length. A better model is needed. More detailed nozzle turbulence experiments are also needed to validate both the contraction and cylindrical segment parts of any nozzle turbulence model.

\section{Estimation of inlet turbulent kinetic energy}

Models of this variety typically require the inlet turbulent kinetic energy. There are a few possibilities to estimate this quantity
\begin{enumerate*}[1.,before=\unskip{: },itemjoin={{; }},itemjoin*={{; or }}]
   \item Find the inlet turbulent kinetic energy from empirical measurements
   \item Select the inlet turbulent kinetic energy to match other measured quantities (less desirable)
   \item Assume the flow is fully developed at the inlet
   \item Assume the inlet turbulent kinetic energy is zero, which may be acceptable for laminar or essentially quiescent entrances
   \item Use standardized tabulated empirical values of turbulent kinetic energy. At present, these tables do not exist, but it seems plausible that one could measure and compile values of turbulent kinetic energy at the outlet for pumps and other common starting points.
\end{enumerate*}

\section{Conclusions}

While Huh's model is inaccurate, relating $\overline{k}$ to the pressure drop in the nozzle is valid and has a long history. Unfortunately, no simple trick like a force balance at the orifice walls can allow one to avoid turbulence modeling. Using standard turbulence modeling approaches we developed \eqref{nozzle Tu}, which can be used in place of Huh's model. However, \eqref{nozzle Tu} has not been validated. We recommend instead using CFD to determine $\overline{k}$ for now.

%Turbulence is a challenging problem, and there are few easy answers. It is hoped that the basic theorems derived in this paper could be of use to future atomization researchers to develop simple semi-empirical models of nozzle turbulence, combining the nozzle loss coefficient and standard turbulence modeling techniques.

%In the future, methods for determining a plausible $k$ profile given $\overline{k}$ and appropriate boundary conditions should be developed, as this would make the turbulent Bernoulli equation in this paper useful as a $k$ inlet boundary condition in CFD\@. Fitting a polynomial with a set average value, symmetry conditions at the center, $k = 0$ at the wall, and $\displaystyle \dpd{k}{n} = 0$ at the wall would be a good start, but this would neglect a near wall peak in $k$.
% \cite[p.~128]{durbin_statistical_2010}

\section*{Appendix: The effect of recirculation zones}
% DONE: Is this model valid with recirculation zones? Are they included in the streamtube? ==> Yes, it is valid. If there are no-slip boundaries outside the recirculation zones (and there is a finite number of time-averaged recirculation zones), then the boundary term acts the same as no-slip/no-penetration.
% DONE: Add justification for recirculation zones. See 2016-06-05-to-2016-07-23.pdf p. 27 (2016-07-18).
% LATER: Look into under what conditions recirculation zones form. ==> start with kline_stall_1959

\begin{wrapfigure}{r}{0.42\textwidth}
\vspace{-2.0em}
\centering
\input{recirculation-zone.pdf_t}
\caption{Recirculation zone.}
\label{fig:recirculation zone}
\end{wrapfigure}
%\vspace{-1.0em}
Earlier in this paper, the side boundaries of the streamtube were assumed to be no-slip. This assumption is false when one or more recirculation zones appear in the flow. Briefly, we'll show that recirculation zones bounded outside by no-slip boundaries have the same effect as no-slip boundaries. In \figref{fig:recirculation zone}, the solid line is a no-slip boundary, the dashed line is the boundary (dividing streamline) of the central streamtube (denoted with c), the dotted line from the left corner (point 1) to the large dot is the inlet to the top of the recirculation zone (denoted with rt; also the outlet of the bottom of the recirculation zone, denoted with rb), and the dotted line from the large dot to the reattachment point (point 2) is the rt outlet (rb inlet). \Eqref{full integral} can be decomposed into $\textstyle 0 = \Delta_\text{c} + \int_\text{in/out,c} + \int_\text{slip,c} + \int_\text{no-slip,c}$ for c, $\textstyle 0 = \Delta_\text{rt} + \int_\text{in/out,rt} + \int_\text{slip,rt} + \int_\text{no-slip,rt}$ for rt, and $\textstyle 0 = \Delta_\text{rb} + \int_\text{in/out,rb} + \int_\text{slip,rb} + \int_\text{no-slip,rb}$ for rb. $\Delta$ are the conservative terms. The ``in/out'' integrals are the inlet and outlet integrals. The slip and no-slip integrals are the integrals over surfaces with slip and no-slip boundaries, respectively. The terms $\textstyle \int_\text{no-slip,rt}$ and $\textstyle \int_\text{slip,rb}$ equal zero by construction. Because rt and rb form a loop, $\Delta_\text{rt} + \Delta_\text{rb} = 0$. And because the inlet of rt equals the outlet of rb, and vice versa, $\textstyle \int_\text{in/out,rt} = -\int_\text{in/out,rb}$. The central streamtube can be connected to rt by noting that $\textstyle \int_\text{slip,c} = -\int_\text{slip,rt}$. Combining these and rearranging, we find that $\textstyle 0 = \Delta_\text{c} + \int_\text{in/out,c} + \int_\text{no-slip,c} + \int_\text{no-slip,rb}$ for the central streamtube, indicating that the recirculation zone is equivalent to the no-slip boundary on its periphery. If multiple recirculation zones separate the central streamtube from the no-slip boundary, this procedure can be repeated multiple times with the same result. %Thus, the central streamtube being bordered by recirculation zones which themselves border no-slip boundaries is no different from the central streamtube bordering no-slip boundaries.

%\section*{Appendix B: Turbulent kinetic energy heuristics in internal flow systems}
%\begin{enumerate*}[1.,before=\unskip{: },itemjoin={{; }},itemjoin*={{; or }}]
   %\item 
%\end{enumerate*}
%Turbulence generation
   %Larger separation zone ==> higher k
      % nikitin_turbulent_1980
      % diffusers
   
   %Higher friction factor ==> higher k
      % cite section later in this paper
   
   %Longer pipe ==> higher k, until it saturates at fully developed value (assuming that inlet k is low, which is typically true)
   
   % acceleration

%Turbulence dissipation (cite one of the screen papers; I can not remember which one)
   %If diameter near or smaller than Kolmogorov scale ==> increases \varepsilon, which in turn decreases k
   
   %If diameter much larger than Kolmogorov scale ==> increases k
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close all
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alpha = 0.05;

if not(strcmp(version, '3.2.4'))
   graphics_toolkit("gnuplot")
end

% DNS:
% http://thtlab.jp/DNS/dns_database.html
% http://data.4tu.nl/repository/uuid:3e4aee44-0857-40e3-8492-1cb37ac1e189

% Experiment:
% http://data.4tu.nl/repository/uuid:bf547674-afad-4d98-89fe-ecb58929cb15

% TODO: Figure out how to estimate wp from others so you can use a lot more data.
% ruff_structure_1991 p. 224L: w' = v' approximation
% mansour_effect_1994 p. 215: w' = v' approximation (also see Physics of Fluids paper)

% TODO: Make plot vs. Re. Use smooth correlation for f as a function of Re. Add other common correlations as a function of Re for comparison. Include Re range of the correlations.

% TODO: Show that plot of eps/D vs (I - I_smooth) for rough tubes has no trend. This would show that the correlation is not a strong function of eps/D, or not a function of it at all.

% TODO: eggels_fully_1994 (DNS), durst_lda_1995

% TODO: lawn_application_1970 fig. 55 (pdf p. 195)
% L/d = 27
% f on pp. 26-27 (pdf pp. 104-105)

% TODO: lawn_application_1970 fig. 50 (pdf p. 190)
% L/d = 27

% TODO: Velocity profile correlations for FD flow (as function of roughness and Re)
% TODO: Add DNS data, other Lawn experiment

I_vec     = [];
epsoD_vec = [];
f_vec     = [];
Re_b_vec  = [];
desc_vec  = [];

% laufer_structure_1952 smooth pipe, Re_max = 5e4

load -ascii ../../../data_index/data/laufer_structure_1952/laufer_structure_1952_fig_3_uou0_5e4.dat
yoRuou0 = laufer_structure_1952_fig_3_uou0_5e4(:, 1);
uou0    = laufer_structure_1952_fig_3_uou0_5e4(:, 2);
u_barou0 = 2 * trapz(yoRuou0, uou0 .* (1 - yoRuou0));

Re_b = 5e4 * u_barou0;

% friction factor correlation
f = friction_factor(Re_b, 5e-06/(9.72));

load -ascii ../../../data_index/data/laufer_structure_1952/laufer_structure_1952_fig_5_up_5e4.dat
yoRup = laufer_structure_1952_fig_5_up_5e4(:, 1);
up    = laufer_structure_1952_fig_5_up_5e4(:, 2);

load -ascii ../../../data_index/data/laufer_structure_1952/laufer_structure_1952_fig_7_vp_5e4.dat
yoRvp = laufer_structure_1952_fig_7_vp_5e4(:, 1);
vp    = laufer_structure_1952_fig_7_vp_5e4(:, 2);

load -ascii ../../../data_index/data/laufer_structure_1952/laufer_structure_1952_fig_7_vp_5e4.dat
yoRwp = laufer_structure_1952_fig_7_vp_5e4(:, 1);
wp    = laufer_structure_1952_fig_7_vp_5e4(:, 2);

I = sqrt((f / 12) * (trapz(yoRup, up.^2 .* (1 - yoRup)) + trapz(yoRvp, vp.^2 .* (1 - yoRvp)) + trapz(yoRwp, wp.^2 .* (1 - yoRwp))));

I_vec     = [I_vec I];
epsoD_vec = [epsoD_vec 5e-06/(9.72)];
f_vec     = [f_vec f];
Re_b_vec  = [Re_b_vec Re_b];
%desc_vec{length(desc_vec)} = 'laufer_structure_1952 smooth pipe, Re_b = ' num2str(Re_b);

% laufer_structure_1952 smooth pipe, Re_max = 5e5
load -ascii ../../../data_index/data/laufer_structure_1952/laufer_structure_1952_fig_3_uou0_5e5.dat
yoRuou0 = laufer_structure_1952_fig_3_uou0_5e5(:, 1);
uou0    = laufer_structure_1952_fig_3_uou0_5e5(:, 2);
u_barou0 = 2 * trapz(yoRuou0, uou0 .* (1 - yoRuou0));

Re_b = 5e5 * u_barou0;

% friction factor correlation
f = friction_factor(Re_b, 5e-06/(9.72));

load -ascii ../../../data_index/data/laufer_structure_1952/laufer_structure_1952_fig_5_up_5e5.dat
yoRup = laufer_structure_1952_fig_5_up_5e5(:, 1);
up    = laufer_structure_1952_fig_5_up_5e5(:, 2);

load -ascii ../../../data_index/data/laufer_structure_1952/laufer_structure_1952_fig_7_vp_5e5.dat
yoRvp = laufer_structure_1952_fig_7_vp_5e5(:, 1);
vp    = laufer_structure_1952_fig_7_vp_5e5(:, 2);

load -ascii ../../../data_index/data/laufer_structure_1952/laufer_structure_1952_fig_7_vp_5e5.dat
yoRwp = laufer_structure_1952_fig_7_vp_5e5(:, 1);
wp    = laufer_structure_1952_fig_7_vp_5e5(:, 2);

I = sqrt((f / 12) * (trapz(yoRup, up.^2 .* (1 - yoRup)) + trapz(yoRvp, vp.^2 .* (1 - yoRvp)) + trapz(yoRwp, wp.^2 .* (1 - yoRwp))));

I_vec     = [I_vec I];
epsoD_vec = [epsoD_vec 5e-06/(9.72)];
f_vec     = [f_vec f];
Re_b_vec  = [Re_b_vec Re_b];
%desc_vec{length(desc_vec)} = 'laufer_structure_1952 smooth pipe, Re_b = ' num2str(Re_b);

% sandborn_experimental_1955, smooth pipe, Re = 3.9207e4

% p. 2: "The Reynolds number range (based on pipe radius)
% p. 11: "Re   Reynolds number based on channel half-width or pipe radius and velocity at the center of flow, $\rho U_c a / \mu$ or $\rho U_c h / \mu$

%  Re       u'    v'    w'
%  2.5e4    13a   10    11
%  5e4      13b   10    11
%  1e5      13c
%  1.5e5    13d

epsoD = 6.56e-06/(4/12); % p. 2: aluminum, 4 inch diameter

load -ascii ../../../data_index/data/sandborn_experimental_1955/sandborn_experimental_1955_fig_7_uou0_25e3.dat
yoRuou0 = sandborn_experimental_1955_fig_7_uou0_25e3(:, 1);
uou0    = sandborn_experimental_1955_fig_7_uou0_25e3(:, 2);
u_barou0 = 2 * trapz(yoRuou0, uou0 .* (1 - yoRuou0));

Re_b = 2 * u_barou0 * 2.5e4;

% friction factor correlation
f = friction_factor(Re_b, epsoD);

u_tauou0 = sqrt(f/8) * u_barou0;

load -ascii ../../../data_index/data/sandborn_experimental_1955/sandborn_experimental_1955_fig_13a_up.dat
yoRup = sandborn_experimental_1955_fig_13a_up(:, 1);
up    = sandborn_experimental_1955_fig_13a_up(:, 2) / u_tauou0;

load -ascii ../../../data_index/data/sandborn_experimental_1955/sandborn_experimental_1955_fig_10_vp_25e3.dat
yoRvp = sandborn_experimental_1955_fig_10_vp_25e3(:, 1);
vp    = sandborn_experimental_1955_fig_10_vp_25e3(:, 2) / u_tauou0;

load -ascii ../../../data_index/data/sandborn_experimental_1955/sandborn_experimental_1955_fig_11_wp_25e3.dat
yoRwp = sandborn_experimental_1955_fig_11_wp_25e3(:, 1);
wp    = sandborn_experimental_1955_fig_11_wp_25e3(:, 2) / u_tauou0;

I = sqrt((f / 12) * (trapz(yoRup, up.^2 .* (1 - yoRup)) + trapz(yoRvp, vp.^2 .* (1 - yoRvp)) + trapz(yoRwp, wp.^2 .* (1 - yoRwp))));

I_vec     = [I_vec I];
epsoD_vec = [epsoD_vec epsoD];
f_vec     = [f_vec f];
Re_b_vec  = [Re_b_vec Re_b];
%desc_vec{length(desc_vec)} = 'laufer_structure_1952 smooth pipe, Re_b = ' num2str(Re_b);

% sandborn_experimental_1955, smooth pipe, Re = ??

load -ascii ../../../data_index/data/sandborn_experimental_1955/sandborn_experimental_1955_fig_7_uou0_50e3.dat
yoRuou0 = sandborn_experimental_1955_fig_7_uou0_50e3(:, 1);
uou0    = sandborn_experimental_1955_fig_7_uou0_50e3(:, 2);
u_barou0 = 2 * trapz(yoRuou0, uou0 .* (1 - yoRuou0));

Re_b = 2 * u_barou0 * 2.5e4;

% friction factor correlation
f = friction_factor(Re_b, epsoD);

u_tauou0 = sqrt(f/8) * u_barou0;

load -ascii ../../../data_index/data/sandborn_experimental_1955/sandborn_experimental_1955_fig_13b_up.dat
yoRup = sandborn_experimental_1955_fig_13b_up(:, 1);
up    = sandborn_experimental_1955_fig_13b_up(:, 2) / u_tauou0;

load -ascii ../../../data_index/data/sandborn_experimental_1955/sandborn_experimental_1955_fig_10_vp_50e3.dat
yoRvp = sandborn_experimental_1955_fig_10_vp_50e3(:, 1);
vp    = sandborn_experimental_1955_fig_10_vp_50e3(:, 2) / u_tauou0;

load -ascii ../../../data_index/data/sandborn_experimental_1955/sandborn_experimental_1955_fig_11_wp_50e3.dat
yoRwp = sandborn_experimental_1955_fig_11_wp_50e3(:, 1);
wp    = sandborn_experimental_1955_fig_11_wp_50e3(:, 2) / u_tauou0;

I = sqrt((f / 12) * (trapz(yoRup, up.^2 .* (1 - yoRup)) + trapz(yoRvp, vp.^2 .* (1 - yoRvp)) + trapz(yoRwp, wp.^2 .* (1 - yoRwp))));

I_vec     = [I_vec I];
epsoD_vec = [epsoD_vec epsoD];
f_vec     = [f_vec f];
Re_b_vec  = [Re_b_vec Re_b];
%desc_vec{length(desc_vec)} = 'laufer_structure_1952 smooth pipe, Re_b = ' num2str(Re_b);

% robertson_study_1965 fig. 32 and 33, p. 86 and 87: rough pipe, run 38

% robertson_study_1965
% See p. 73 for friction factors.
% 
%             k/D
% 3" smooth   0
% 3" rough    0.0145 (p. 76)
% 8" rough    0.0015 (p. 76)
% 
% See tables in the back for more precise measurements.

Re_b = 4.09e4;
f = 0.0434;

load -ascii ../../../data_index/data/robertson_study_1965/robertson_study_1965_fig_32_up_38.dat
yoRup = robertson_study_1965_fig_32_up_38(:, 1);
up    = robertson_study_1965_fig_32_up_38(:, 2);

load -ascii ../../../data_index/data/robertson_study_1965/robertson_study_1965_fig_32_vp_38.dat
yoRvp = robertson_study_1965_fig_32_vp_38(:, 1);
vp    = robertson_study_1965_fig_32_vp_38(:, 2);

load -ascii ../../../data_index/data/robertson_study_1965/robertson_study_1965_fig_33_wp_38.dat
yoRwp = robertson_study_1965_fig_33_wp_38(:, 1);
wp    = robertson_study_1965_fig_33_wp_38(:, 2) .* interp1(yoRup, up, yoRwp);

I = sqrt((f / 12) * (trapz(yoRup, up.^2 .* (1 - yoRup)) + trapz(yoRvp, vp.^2 .* (1 - yoRvp)) + trapz(yoRwp, wp.^2 .* (1 - yoRwp))));

I_vec     = [I_vec I];
epsoD_vec = [epsoD_vec 0.016];
f_vec     = [f_vec f];
Re_b_vec  = [Re_b_vec Re_b];
%desc_vec{length(desc_vec)} = 'robertson_study_1965 rough pipe, Re_b = 40900';

% patel_reynolds_1968 table 2: smooth, Re = 2.2394e7

load -ascii ../../../data_index/data/patel_reynolds_1968/patel_reynolds_1968_table_2_vel_prof.dat
yoRuoutau = patel_reynolds_1968_table_2_vel_prof(:, 1);
uoutau    = patel_reynolds_1968_table_2_vel_prof(:, 2);
u_baroutau = 2 * trapz(yoRuoutau, uoutau .* (1 - yoRuoutau));

Re_b = u_baroutau * 10.33e5;

f = 8 / u_baroutau^2;

load -ascii ../../../data_index/data/patel_reynolds_1968/patel_reynolds_1968_table_2_rms.dat
yoR = patel_reynolds_1968_table_2_rms(:, 1);
up = patel_reynolds_1968_table_2_rms(:, 2);
vp = patel_reynolds_1968_table_2_rms(:, 3);
wp = patel_reynolds_1968_table_2_rms(:, 4);

I = sqrt((f / 12) * (trapz(yoR, up.^2 .* (1 - yoR)) + trapz(yoR, vp.^2 .* (1 - yoR)) + trapz(yoR, wp.^2 .* (1 - yoR))));

I_vec     = [I_vec I];
epsoD_vec = [epsoD_vec 0];
f_vec     = [f_vec f];
Re_b_vec  = [Re_b_vec Re_b];
%desc_vec{length(desc_vec)} = 'robertson_study_1965 rough pipe, Re_b = 40900';

% patel_reynolds_1968 table 3: smooth, Re = 3.7453e7

load -ascii ../../../data_index/data/patel_reynolds_1968/patel_reynolds_1968_table_3_vel_prof.dat
yoRuoutau = patel_reynolds_1968_table_3_vel_prof(:, 1);
uoutau    = patel_reynolds_1968_table_3_vel_prof(:, 2);
u_baroutau = 2 * trapz(yoRuoutau, uoutau .* (1 - yoRuoutau));

Re_b = u_baroutau * 16.12e5;

f = 8 / u_baroutau^2;

load -ascii ../../../data_index/data/patel_reynolds_1968/patel_reynolds_1968_table_3_rms.dat
yoR = patel_reynolds_1968_table_3_rms(:, 1);
up = patel_reynolds_1968_table_3_rms(:, 2);
vp = patel_reynolds_1968_table_3_rms(:, 3);
wp = patel_reynolds_1968_table_3_rms(:, 4);

I = sqrt((f / 12) * (trapz(yoR, up.^2 .* (1 - yoR)) + trapz(yoR, vp.^2 .* (1 - yoR)) + trapz(yoR, wp.^2 .* (1 - yoR))));

I_vec     = [I_vec I];
epsoD_vec = [epsoD_vec 0];
f_vec     = [f_vec f];
Re_b_vec  = [Re_b_vec Re_b];
%desc_vec{length(desc_vec)} = 'robertson_study_1965 rough pipe, Re_b = 40900';

% gow_fully-developed_1969
% also see townes_turbulent_1972
% The latter indicates that the Reynolds number is the bulk Reynolds number.

%  fig   p     pdf   desc
%  29    62    74    rms smooth, Re = 250,000 (according to townes_turbulent_1972 fig. 8)
%  30    63    75    rms R/eps = 208, Re = 52,000 (no v')
%  31    64    76    rms R/eps = 208, Re = 170,000
%  32    65    77    rms R/eps = 208, Re = 480,000
%  33    66    78    rms, R/eps = 26.4, Re = 34,500
%  34    67    79    rms, R/eps = 26.4, Re = 75,000
%  35    68    80    rms, R/eps = 26.4, Re = 170,000
%  37    70    82    friction factor

load -ascii ../../../data_index/data/gow_fully-developed_1969/gow_fully-developed_1969_fig_37_f_smooth.dat
load -ascii ../../../data_index/data/gow_fully-developed_1969/gow_fully-developed_1969_fig_37_f_26_4.dat
load -ascii ../../../data_index/data/gow_fully-developed_1969/gow_fully-developed_1969_fig_37_f_208.dat

Re_gow_smooth = gow_fully_developed_1969_fig_37_f_smooth(:, 1);
f_gow_smooth  = gow_fully_developed_1969_fig_37_f_smooth(:, 2)/100;
Re_gow_26_4   = gow_fully_developed_1969_fig_37_f_26_4(:, 1);
f_gow_26_4    = gow_fully_developed_1969_fig_37_f_26_4(:, 2)/100;
Re_gow_208    = gow_fully_developed_1969_fig_37_f_26_4(:, 1);
f_gow_208     = gow_fully_developed_1969_fig_37_f_26_4(:, 2)/100;
% Gow has an error in the y label of the plot. It should be 100 * f, not log(100 * f).

%figure(2)
%loglog(Re_gow_smooth, f_gow_smooth, 'x')
%hold on
%Re_vec = logspace(3, 6, 1e3);
%loglog(Re_vec, friction_factor(Re_vec, 0), 'b-')
%hold off

%figure(1)

Re_b = 250000;
f = interp1(Re_gow_smooth, f_gow_smooth, Re_b); % TODO: Change to smoothing later.

load -ascii ../../../data_index/data/gow_fully-developed_1969/gow_fully-developed_1969_fig_29_up.dat
yoRup = gow_fully_developed_1969_fig_29_up(:, 1);
up    = gow_fully_developed_1969_fig_29_up(:, 2);

load -ascii ../../../data_index/data/gow_fully-developed_1969/gow_fully-developed_1969_fig_29_vp.dat
yoRvp = gow_fully_developed_1969_fig_29_vp(:, 1);
vp    = gow_fully_developed_1969_fig_29_vp(:, 2);

load -ascii ../../../data_index/data/gow_fully-developed_1969/gow_fully-developed_1969_fig_29_wp.dat
yoRwp = gow_fully_developed_1969_fig_29_wp(:, 1);
wp    = gow_fully_developed_1969_fig_29_wp(:, 2);

I = sqrt((f / 12) * (trapz(yoRup, up.^2 .* (1 - yoRup)) + trapz(yoRvp, vp.^2 .* (1 - yoRvp)) + trapz(yoRwp, wp.^2 .* (1 - yoRwp))));

I_vec     = [I_vec I];
epsoD_vec = [epsoD_vec 0];
f_vec     = [f_vec f];
Re_b_vec  = [Re_b_vec Re_b];
%desc_vec{length(desc_vec)} = 'gow_fully-developed_1969 smooth pipe, Re_b \approx 250000';

Re_b = 170000;
f = interp1(Re_gow_208, f_gow_208, Re_b); % TODO: Change to smoothing later.

load -ascii ../../../data_index/data/gow_fully-developed_1969/gow_fully-developed_1969_fig_31_up.dat
yoRup = gow_fully_developed_1969_fig_31_up(:, 1);
up    = gow_fully_developed_1969_fig_31_up(:, 2);

load -ascii ../../../data_index/data/gow_fully-developed_1969/gow_fully-developed_1969_fig_31_vp.dat
yoRvp = gow_fully_developed_1969_fig_31_vp(:, 1);
vp    = gow_fully_developed_1969_fig_31_vp(:, 2);

load -ascii ../../../data_index/data/gow_fully-developed_1969/gow_fully-developed_1969_fig_31_wp.dat
yoRwp = gow_fully_developed_1969_fig_31_wp(:, 1);
wp    = gow_fully_developed_1969_fig_31_wp(:, 2);

I = sqrt((f / 12) * (trapz(yoRup, up.^2 .* (1 - yoRup)) + trapz(yoRvp, vp.^2 .* (1 - yoRvp)) + trapz(yoRwp, wp.^2 .* (1 - yoRwp))));

I_vec     = [I_vec I];
epsoD_vec = [epsoD_vec 1/208];
f_vec     = [f_vec f];
Re_b_vec  = [Re_b_vec Re_b];
%desc_vec{length(desc_vec)} = 'gow_fully-developed_1969 smooth pipe, Re_b \approx 250000';
Re_b = 34500;
f = interp1(Re_gow_26_4, f_gow_26_4, Re_b); % TODO: Change to smoothing later.

Re_b = 480000;
f = interp1(Re_gow_208, f_gow_208, Re_b, 'nearest', 'extrap'); % TODO: Change to smoothing later.

load -ascii ../../../data_index/data/gow_fully-developed_1969/gow_fully-developed_1969_fig_32_up.dat
yoRup = gow_fully_developed_1969_fig_32_up(:, 1);
up    = gow_fully_developed_1969_fig_32_up(:, 2);

load -ascii ../../../data_index/data/gow_fully-developed_1969/gow_fully-developed_1969_fig_32_vp.dat
yoRvp = gow_fully_developed_1969_fig_32_vp(:, 1);
vp    = gow_fully_developed_1969_fig_32_vp(:, 2);

load -ascii ../../../data_index/data/gow_fully-developed_1969/gow_fully-developed_1969_fig_32_wp.dat
yoRwp = gow_fully_developed_1969_fig_32_wp(:, 1);
wp    = gow_fully_developed_1969_fig_32_wp(:, 2);

I = sqrt((f / 12) * (trapz(yoRup, up.^2 .* (1 - yoRup)) + trapz(yoRvp, vp.^2 .* (1 - yoRvp)) + trapz(yoRwp, wp.^2 .* (1 - yoRwp))));

I_vec     = [I_vec I];
epsoD_vec = [epsoD_vec 1/208];
f_vec     = [f_vec f];
Re_b_vec  = [Re_b_vec Re_b];
%desc_vec{length(desc_vec)} = 'gow_fully-developed_1969 smooth pipe, Re_b \approx 250000';
Re_b = 34500;
f = interp1(Re_gow_26_4, f_gow_26_4, Re_b); % TODO: Change to smoothing later.

load -ascii ../../../data_index/data/gow_fully-developed_1969/gow_fully-developed_1969_fig_33_up.dat
yoRup = gow_fully_developed_1969_fig_33_up(:, 1);
up    = gow_fully_developed_1969_fig_33_up(:, 2);

load -ascii ../../../data_index/data/gow_fully-developed_1969/gow_fully-developed_1969_fig_33_vp.dat
yoRvp = gow_fully_developed_1969_fig_33_vp(:, 1);
vp    = gow_fully_developed_1969_fig_33_vp(:, 2);

load -ascii ../../../data_index/data/gow_fully-developed_1969/gow_fully-developed_1969_fig_33_wp.dat
yoRwp = gow_fully_developed_1969_fig_33_wp(:, 1);
wp    = gow_fully_developed_1969_fig_33_wp(:, 2);

I = sqrt((f / 12) * (trapz(yoRup, up.^2 .* (1 - yoRup)) + trapz(yoRvp, vp.^2 .* (1 - yoRvp)) + trapz(yoRwp, wp.^2 .* (1 - yoRwp))));

I_vec     = [I_vec I];
epsoD_vec = [epsoD_vec 1/26.4];
f_vec     = [f_vec f];
Re_b_vec  = [Re_b_vec Re_b];
%desc_vec{length(desc_vec)} = 'gow_fully-developed_1969 smooth pipe, Re_b \approx 250000';

Re_b = 75000;
f = interp1(Re_gow_26_4, f_gow_26_4, Re_b); % TODO: Change to smoothing later.

load -ascii ../../../data_index/data/gow_fully-developed_1969/gow_fully-developed_1969_fig_34_up.dat
yoRup = gow_fully_developed_1969_fig_34_up(:, 1);
up    = gow_fully_developed_1969_fig_34_up(:, 2);

load -ascii ../../../data_index/data/gow_fully-developed_1969/gow_fully-developed_1969_fig_34_vp.dat
yoRvp = gow_fully_developed_1969_fig_34_vp(:, 1);
vp    = gow_fully_developed_1969_fig_34_vp(:, 2);

load -ascii ../../../data_index/data/gow_fully-developed_1969/gow_fully-developed_1969_fig_34_wp.dat
yoRwp = gow_fully_developed_1969_fig_34_wp(:, 1);
wp    = gow_fully_developed_1969_fig_34_wp(:, 2);

I = sqrt((f / 12) * (trapz(yoRup, up.^2 .* (1 - yoRup)) + trapz(yoRvp, vp.^2 .* (1 - yoRvp)) + trapz(yoRwp, wp.^2 .* (1 - yoRwp))));

I_vec     = [I_vec I];
epsoD_vec = [epsoD_vec 1/26.4];
f_vec     = [f_vec f];
Re_b_vec  = [Re_b_vec Re_b];
%desc_vec{length(desc_vec)} = 'gow_fully-developed_1969 smooth pipe, Re_b \approx 250000';

Re_b = 170000;
f = interp1(Re_gow_26_4, f_gow_26_4, Re_b); % TODO: Change to smoothing later.

load -ascii ../../../data_index/data/gow_fully-developed_1969/gow_fully-developed_1969_fig_35_up.dat
yoRup = gow_fully_developed_1969_fig_35_up(:, 1);
up    = gow_fully_developed_1969_fig_35_up(:, 2);

load -ascii ../../../data_index/data/gow_fully-developed_1969/gow_fully-developed_1969_fig_35_vp.dat
yoRvp = gow_fully_developed_1969_fig_35_vp(:, 1);
vp    = gow_fully_developed_1969_fig_35_vp(:, 2);

load -ascii ../../../data_index/data/gow_fully-developed_1969/gow_fully-developed_1969_fig_35_wp.dat
yoRwp = gow_fully_developed_1969_fig_35_wp(:, 1);
wp    = gow_fully_developed_1969_fig_35_wp(:, 2);

I = sqrt((f / 12) * (trapz(yoRup, up.^2 .* (1 - yoRup)) + trapz(yoRvp, vp.^2 .* (1 - yoRvp)) + trapz(yoRwp, wp.^2 .* (1 - yoRwp))));

I_vec     = [I_vec I];
epsoD_vec = [epsoD_vec 1/26.4];
f_vec     = [f_vec f];
Re_b_vec  = [Re_b_vec Re_b];
%desc_vec{length(desc_vec)} = 'gow_fully-developed_1969 smooth pipe, Re_b \approx 250000';

% powe_turbulence_1970 fig. 12, p. 157: smooth pipe, Re_b = 165000
load -ascii ../../../data_index/data/powe_turbulence_1970/powe_turbulence_1970_fig_9.dat

Re  = powe_turbulence_1970_fig_9(:, 2);
f_9 = powe_turbulence_1970_fig_9(:, 1);

coeffs = polyfit(log(Re), log(f_9), 1);
%loglog(Re, f, 'x')
%hold on
%Re_vec = logspace(4, 6, 1e2);
%loglog(Re_vec, exp(coeffs(2)) * Re_vec.^coeffs(1))
%%loglog(Re, f_smooth)
%hold off

Re_b = 165000;
f = exp(coeffs(2)) * Re_b.^coeffs(1);
%f = interp1(Re, f_9, Re_b)

load -ascii ../../../data_index/data/powe_turbulence_1970/powe_turbulence_1970_fig_12_up.dat
yoRup = powe_turbulence_1970_fig_12_up(:, 1);
up    = powe_turbulence_1970_fig_12_up(:, 2);

load -ascii ../../../data_index/data/powe_turbulence_1970/powe_turbulence_1970_fig_12_vp.dat
yoRvp = powe_turbulence_1970_fig_12_vp(:, 1);
vp    = powe_turbulence_1970_fig_12_vp(:, 2);

load -ascii ../../../data_index/data/powe_turbulence_1970/powe_turbulence_1970_fig_12_wp.dat
yoRwp = powe_turbulence_1970_fig_12_wp(:, 1);
wp    = powe_turbulence_1970_fig_12_wp(:, 2);

I = sqrt((f / 12) * (trapz(yoRup, up.^2 .* (1 - yoRup)) + trapz(yoRvp, vp.^2 .* (1 - yoRvp)) + trapz(yoRwp, wp.^2 .* (1 - yoRwp))));

I_vec     = [I_vec I];
epsoD_vec = [epsoD_vec 0];
f_vec     = [f_vec f];
Re_b_vec  = [Re_b_vec Re_b];
%desc_vec{length(desc_vec)} = 'powe_turbulence_1970 smooth pipe, Re_b = 165000';

% powe_turbulence_1970 fig. 95, p. 273: slightly rough pipe, Re_b = 165000
load -ascii ../../../data_index/data/powe_turbulence_1970/powe_turbulence_1970_fig_92.dat

Re  = powe_turbulence_1970_fig_92(:, 1);
f_9 = powe_turbulence_1970_fig_92(:, 2);

Re_b = 165000;
f = interp1(Re, f_9, Re_b); % TODO: Change to smoothing later.

load -ascii ../../../data_index/data/powe_turbulence_1970/powe_turbulence_1970_fig_95_up.dat
yoRup = powe_turbulence_1970_fig_95_up(:, 1);
up    = powe_turbulence_1970_fig_95_up(:, 2);

load -ascii ../../../data_index/data/powe_turbulence_1970/powe_turbulence_1970_fig_95_vp.dat
yoRvp = powe_turbulence_1970_fig_95_vp(:, 1);
vp    = powe_turbulence_1970_fig_95_vp(:, 2);

load -ascii ../../../data_index/data/powe_turbulence_1970/powe_turbulence_1970_fig_95_wp.dat
yoRwp = powe_turbulence_1970_fig_95_wp(:, 1);
wp    = powe_turbulence_1970_fig_95_wp(:, 2);

I = sqrt((f / 12) * (trapz(yoRup, up.^2 .* (1 - yoRup)) + trapz(yoRvp, vp.^2 .* (1 - yoRvp)) + trapz(yoRwp, wp.^2 .* (1 - yoRwp))));

I_vec     = [I_vec I];
epsoD_vec = [epsoD_vec 0.0286/11.883];
f_vec     = [f_vec f];
Re_b_vec  = [Re_b_vec Re_b];
%desc_vec{length(desc_vec)} = 'powe_turbulence_1970 slightly rough pipe, Re_b = 165000';

% powe_turbulence_1970 fig. 172, p. 377: rough pipe, Re_b = 165000
% There appears to be an error in the y scale for the figure. I assume it is too small by a factor of 10.
load -ascii ../../../data_index/data/powe_turbulence_1970/powe_turbulence_1970_fig_169.dat

Re  = powe_turbulence_1970_fig_169(:, 1);
f_9 = powe_turbulence_1970_fig_169(:, 2);

Re_b = 165000;
f = interp1(Re, f_9, Re_b); % TODO: Change to smoothing later.

load -ascii ../../../data_index/data/powe_turbulence_1970/powe_turbulence_1970_fig_172_up.dat
yoRup = powe_turbulence_1970_fig_172_up(:, 1);
up    = 10 * powe_turbulence_1970_fig_172_up(:, 2);

load -ascii ../../../data_index/data/powe_turbulence_1970/powe_turbulence_1970_fig_172_vp.dat
yoRvp = powe_turbulence_1970_fig_172_vp(:, 1);
vp    = 10 * powe_turbulence_1970_fig_172_vp(:, 2);

load -ascii ../../../data_index/data/powe_turbulence_1970/powe_turbulence_1970_fig_172_wp.dat
yoRwp = powe_turbulence_1970_fig_172_wp(:, 1);
wp    = 10 * powe_turbulence_1970_fig_172_wp(:, 2);

I = sqrt((f / 12) * (trapz(yoRup, up.^2 .* (1 - yoRup)) + trapz(yoRvp, vp.^2 .* (1 - yoRvp)) + trapz(yoRwp, wp.^2 .* (1 - yoRwp))));

I_vec     = [I_vec I];
epsoD_vec = [epsoD_vec 0.255/11.883];
f_vec     = [f_vec f];
Re_b_vec  = [Re_b_vec Re_b];
%desc_vec{length(desc_vec)} = 'powe_turbulence_1970 rough pipe, Re_b = 165000';

% lawn_determination_1971 fig. 5, p. 487: smooth pipe, runs 49 for up and wp and run 50 for vp, Re \approx 88500
f_lawn_lowRe  =@(Re) 0.079 * Re^(-0.25); % 3e4 < Re < 1e5
f_lawn_highRe =@(Re) 0.046 * Re^(-0.20); % 2e5 < Re < 3e5

Re_b = ((8.7 + 9.0) / 2) * 1e4;

f = f_lawn_lowRe(Re_b);

load -ascii ../../../data_index/data/lawn_determination_1971/lawn_determination_1971_fig_5_up_49.dat
yoRup = lawn_determination_1971_fig_5_up_49(:, 1);
up    = lawn_determination_1971_fig_5_up_49(:, 2);

load -ascii ../../../data_index/data/lawn_determination_1971/lawn_determination_1971_fig_5_vp_50.dat
yoRvp = lawn_determination_1971_fig_5_vp_50(:, 1);
vp    = lawn_determination_1971_fig_5_vp_50(:, 2);

load -ascii ../../../data_index/data/lawn_determination_1971/lawn_determination_1971_fig_5_wp_49.dat
yoRwp = lawn_determination_1971_fig_5_wp_49(:, 1);
wp    = lawn_determination_1971_fig_5_wp_49(:, 2);

I = sqrt((f / 12) * (trapz(yoRup, up.^2 .* (1 - yoRup)) + trapz(yoRvp, vp.^2 .* (1 - yoRvp)) + trapz(yoRwp, wp.^2 .* (1 - yoRwp))));

I_vec     = [I_vec I];
epsoD_vec = [epsoD_vec 0];
f_vec     = [f_vec f];
Re_b_vec  = [Re_b_vec Re_b];
%desc_vec{length(desc_vec)} = 'lawn_determination_1971 smooth pipe, Re_b \approx 88500';

% plot the results

%figure(1)
%plot(epsoD_vec, I_vec, 'ko')
%grid('on')
%hold on
%coeffs = polyfit(epsoD_vec, I_vec, 1)
%epsoD_vec2 = linspace(0, 0.03, 1e2);
%plot(epsoD_vec2, coeffs(2) + coeffs(1) * epsoD_vec2, '-')
%hold off
%xlabel('eps/D')
%ylabel('<I^2>^{1/2}')

figure(1)

N_pts = length(I_vec)
N_smooth = sum(epsoD_vec < 1e-4)
N_rough = N_pts - N_smooth

f_vec_smooth = [];
f_vec_rough  = [];
I_vec_smooth = [];
I_vec_rough  = [];
for i = 1:N_pts
   if epsoD_vec(i) < 1e-4
      f_vec_smooth = [f_vec_smooth f_vec(i)];
      I_vec_smooth = [I_vec_smooth I_vec(i)];
   else
      f_vec_rough = [f_vec_rough f_vec(i)];
      I_vec_rough = [I_vec_rough I_vec(i)];
   end
end
%for i = 1:N_pts
   %if Re_b_vec(i) < 1e5
      %f_vec_smooth = [f_vec_smooth f_vec(i)];
      %I_vec_smooth = [I_vec_smooth I_vec(i)];
   %else
      %f_vec_rough = [f_vec_rough f_vec(i)];
      %I_vec_rough = [I_vec_rough I_vec(i)];
   %end
%end

coeffs = polyfit(log(f_vec), log(I_vec), 1);
disp(['all points: I = ' num2str(exp(coeffs(2))) '*f^' num2str(coeffs(1))])

I_vec_predicted = exp(coeffs(2)) * (f_vec.^coeffs(1));
SS_res = sum((I_vec - I_vec_predicted).^2);
SS_tot = sum((I_vec - mean(I_vec)).^2);
r2 = 1 - SS_res / SS_tot

disp(['R^2 = ' num2str(r2)])

z_alpha = tinv(1 - alpha / 2, N_pts - 2);
pm = z_alpha * (coeffs(1) / sqrt(N_pts - 2)) * sqrt(1 / r2 - 1)

smooth_coeffs = polyfit(log(f_vec_smooth), log(I_vec_smooth), 1);
rough_coeffs = polyfit(log(f_vec_rough), log(I_vec_rough), 1);

disp(['smooth only: I = ' num2str(exp(smooth_coeffs(2))) '*f^' num2str(smooth_coeffs(1))])
disp(['rough only: I = ' num2str(exp(rough_coeffs(2))) '*f^' num2str(rough_coeffs(1))])

const = ((f_vec').^(1/3))\(I_vec');
disp(['all points (theory): I = ' num2str(const) '*f^(1/3)'])
I_vec_predicted = const * (f_vec.^(1/3));
SS_res = sum((I_vec - I_vec_predicted).^2);
SS_tot = sum((I_vec - mean(I_vec)).^2);
disp(['R^2 = ' num2str(1 - SS_res / SS_tot)])

figure(1)
plot(f_vec_smooth, I_vec_smooth, 'ko')
grid('on')
hold on
plot(f_vec_rough, I_vec_rough, 'ro')
f_vec2 = linspace(1e-4, ceil(100*1.1*max(f_vec))/100, 1e3);
plot(f_vec2, exp(coeffs(2)) * f_vec2.^coeffs(1), 'b-')
%plot(f_vec2, const * (f_vec2.^(1/3)), 'g-')
hold off
xlabel('$f$')
%ylabel('<I^2>^{1/2}')
ylabel('$Tu_0$')
axis([0 max(f_vec2) 0 ceil(100*max(I_vec))/100])
legend('smooth pipes', 'rough pipes', 'location', 'SouthEast')
print('-dtex','f-vs-Tu.tex', '-S400,200');

figure(2)
Re_vec_2 = logspace(4, 6, 1e2);
%f_vec3 = 0.046 ./ Re_vec.^0.2; % smooth pipes, should be better than Blasius (1913) correlation. http://www.thermopedia.com/content/789/
f_vec3 = 0.079 ./ Re_vec_2.^0.25; % Blasius (1913) correlation
loglog(Re_vec_2, exp(coeffs(2)) * f_vec3.^coeffs(1), 'b-')
hold on
% https://www.cfd-online.com/Wiki/Turbulence_intensity
loglog(Re_vec_2, 0.126 * Re_vec_2.^(-1/8), 'r-') % FLUENT
loglog(Re_vec_2, 0.227 * Re_vec_2.^(-0.100), 'k-') % russo_scaling_2016
loglog(Re_vec_2, 0.0550 * Re_vec_2.^(-0.0407), 'g-') % russo_scaling_2016
loglog(Re_vec_2, 0.144 * (0.8 * Re_vec_2 / 2).^(-0.146), 'c-') % sandborn_experimental_1955
% TODO: bourke_measurement_1968 pp. 63
% TODO: pichurin_vliyaniye_1999 cites michkin_vliyaniye_1976. Not fully developed pipe flow, but same correlation as Skrebkov. michkin_vliyaniye_1976 contains no such correlation, so just cite pichurin_vliyaniye_1999?
% TODO: skrebkov_turbulentnyye_1963 / skrebkov_turbulent_1966 cites correlation by Minsky
% jackson_two-phase_1983 ref. 8 by Davies: v' correlation, using integral scale correlation
% kim_condensation_1989-1 p. 1072L: > The initial bulk turbulence intensity $V_b$ is proportional to the square root of the nozzle friction factor, and was increased by 30 to 60 percent by roughness
% bhunia_splattering_1994 p. 341
hold off
grid('on')
legend('our correlation w/ Blasius (1913)', 'FLUENT correlation', '\cite{russo_scaling_2016}', '\cite{russo_scaling_2016}', '\cite{sandborn_experimental_1955}', 'location', 'SouthWest')
xlabel('$Re_{l0}$')
ylabel('$u^\prime/\overline{U}_0$ or $u^\prime_x/\overline{U}_0$')

%figure(3)
%plot(f_vec_rough, I_vec_rough - exp(rough_coeffs(2)) * f_vec_rough.^rough_coeffs(1), 'ro')
%grid('on')
%xlabel('f')
%ylabel('I - I_{smooth}')


