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ABSTRACT
The trajectory of a water jet is important in many applications,

including fire protection, irrigation, and decorative fountains. In-
creasing the maximum distance the jet travels by changing the
nozzle or other variables is often desirable. This distance could
be the horizontal range (also often called the reach or throw) or
the maximum vertical height. Which factors control the trajectory
are unclear. Consequently, a simple analytical model is devel-
oped which provides a qualitative understanding of the system.
This model differs significantly from previous models. Previ-
ous models either used a dragless trajectory, which is correct
according to potential flow theory if the jet does not break into
droplets, or treated the trajectory as if droplets formed immedi-
ately upon leaving the nozzle. Both approaches have been noted
to be unsatisfactory by past researchers. Our model compares
favorably against available experimental data. Using our model,
we show that the range decreases as the nozzle Froude number
increases and that range increases as breakup length and droplet
size increase.

NOMENCLATURE
0 conditions at nozzle exit
b conditions at (time-averaged) breakup location
g gas fluid type (air)
l liquid fluid type (water)
ρi fluid i mass density
ηh ≡ h/H jet height efficiency
ηR ≡ R/Rmax,h0=0 range efficiency

∗Address all correspondence to this author.

µi fluid i dynamic viscosity
σ surface tension of water (marked l) immersed in atmospheric

air (marked g)
θi angle of motion of a particle in the 2D plane at location i

(e.g., θ0 is the firing angle)
AD droplet projected area (= πD2/4 for spherical droplets)
Boi j ≡ (ρigL2

j)/σ Bond number of fluid i and length j (Boi j ≡
Wei j/Fr j)

Cd drag coefficient
C∗

d reduced drag coefficient that accounts for the density ratio,
Froude number, and droplet size

d nozzle exit diameter
D droplet diameter
D∗ ≡ D/d droplet diameter normalized by the nozzle diameter

(d)
Fr j ≡V 2

0 /(gL j) Froude number of length j
Lb time-averaged breakup length of a liquid jet
L∗ ≡ Lb/d breakup length normalized by nozzle diameter (d)
g gravitational acceleration
h maximum height obtained by a vertical fountain
h0 starting firing height
H ≡ V 2

0 /(2g) theoretical maximum height (without drag or
breakup) that can be obtained by a vertical foun-
tain

mD droplet mass (= πρlD3/6 for spherical droplets)
R horizontal range
Rmax,h0=0 ≡V 2

0 /g theoretical maximum horizontal range (with-
out drag or breakup) that can be obtained by
a trajectory with a no starting height (h0 = 0)

Rei j ≡ ρiL jV0/µi Reynolds number of fluid i and length j
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Wei j ≡ ρiL jV 2
0 /σ Weber number of fluid i and length j

Vi velocity at location i

1 INTRODUCTION
Water jets appear in fire protection as fire hose streams, in

agriculture as irrigation sprinklers, and in architecture as decora-
tive fountains. Despite the ubiquitous applications, the trajectory
of a water jet is poorly understood. Typically, accurate predic-
tions of the trajectory of a water jet require either empirical tables,
charts, or correlations [1, 2, 3]. This empirical data applies only
for particular water jet systems, and it may not generalize to other
systems. Further, how specific features of water jet systems affect
the trajectory not not particularly clear. Given those issues, two
related problems are of interest. The first is the theoretical pre-
diction of the height of a water jet shot vertically, for example, a
fountain, or a water jet used to fight a high rise fire. The second
is the theoretical prediction of the horizontal range of a water
jet shot at a target from a distance, as is the typical case in a
fire. Height and range here refer to the maximum extent of the
trajectory.

The typical dynamics of these jets is as follows. Water is
forced through a nozzle by a pressure differential. The flow be-
comes a free jet, after which it generally begins to break apart into
droplets of various sizes. We define the coherent portion as the
part of the jet which has not broken into droplets. The breakup
process is unsteady, and consequently the coherent length of the
jet varies in time. The phrase “breakup length” generally refers
to the time average of length of the coherent portion of the jet.
Generally, the breakup length and droplet sizes are functions of
the water jet system including the nozzle geometry, turbulence,
flow unsteadiness, and presence of air bubbles in the water, among
other factors. For details on the breakup of liquid jets the reader
is referred to Lin and Reitz [4] and Birouk and Lekic [5]. It is
commonly hypothesized that decreasing spray formation (i.e., in-
creasing the breakup length) increases the range [6, 7]. Theobald’s
experiments [1] support this hypothesis, but there is no clear the-
oretical support. One major goal of this work is to demonstrate
how different spray characteristics affect the trajectory to design
systems with longer range and more favorable water distributions
at the target.

There is a large body of research into water jet trajectory
owing to the wide variety of applications. Much of this research
is somewhat obscure, as researchers in fire protection tend to
be unaware of research done by agricultural engineers, and vice
versa. For brevity, only representative research can be cited.
Also, as the initial coherent portion presents the challenge in
this problem, research which focused on nozzles which atomized
the water (such as fire fighting fog nozzles) are not part of the
scope of this article. And while wind can provide a cross flow
in the applications of interest, wind is neglected in this work for
simplicity. There are a large number of studies examining liquid

jet trajectory in crossflow, typically for gas turbine applications,
and these may prove useful if this work is extended to include the
effects of wind.

Conducting water jet trajectory experiments in a truly qui-
escent atmosphere is difficult. Almost all tests were conducted
outdoors owing to the long range of these jets. Outdoor tests
include those by Freeman [8], Rouse, Howe, and Metzler [6], and
Arato, Crow, and Miller [9]. Testing indoors would eliminate
the possibility of interference from wind. Theobald’s tests are
the only we are aware of that were done entirely indoors. Past
tests also tended not to describe important details. Few have dis-
cussed the nozzle exit velocity profile aside from Arato, Crow,
and Miller [9], Freeman [8], and Theobald [1], and the latter did
so only qualitatively. The nozzle exit velocity profile is known to
strongly influence the breakup process [5, 10]. Arato, Crow, and
Miller [9] also were the only to report the turbulence intensity,
which Rouse, Howe, and Metzler [6] indicates is of fundamental
importance to the jet breakup and trajectory. The reduction of
breakup length as turbulence intensity increases was shown by
Ervine and Falvey [11], but we are not aware of studies which
looked at the effect of varying turbulence intensity on the tra-
jectory. More careful tests characterizing these effects on the
trajectory are overdue. Unfortunately, the possibility of reducing
the space needed for indoor tests with scale modeling is limited
because surface tension does not vary adequately between fluids
or through adding a surfactant.

Most previous theoretical work on this subject either ne-
glected the effect of drag on the trajectory [6, 12], or treated the
trajectory as if it consisted of droplets for its entire duration [13],
as is the case for an atomized spray. Some of the latter studies
used linear drag models to simplify analysis relative to a quadratic
drag law [14]. None of these approaches are particularly accurate.
In order to match experimental data, Hatton and Osborne [15]
and Hatton, Leech, and Osborne [16] use an empirical drag law
with a variable power on the velocity, which has no theoretical
justification. This model cannot show the effect of changing the
droplet size distribution or breakup length, and the model can be
considered a complicated curve fit to a particular water jet system.
This highlights an additional shortcoming of past models. Past
models do not use explicitly use the breakup characteristics of
a nozzle, resulting in two related issues: 1. inaccuracy from ei-
ther neglecting drag altogether or applying an inappropriate drag
model and/or 2. the failure of the model to generalize to water jet
systems with different breakup characteristics.

A model which shares some similarities with ours was de-
veloped by Murzabaeb and Yarin [17]. They characterize the fit
between the data and their model as satisfactory. The authors
used correlations for breakup length and droplet size as the initial
conditions for a numerical turbulent multiphase boundary layer
calculation, from which they obtained the trajectory of the water
jet. Their model included the computation of air entrainment, and
it is quite complex when compared against ours.
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Isaev [18] showed theoretically that the trajectory in the dra-
gless case depends on Frd ≡ V 2

0 /(gd), where V0 is the spatially
averaged velocity of the water jet emerging from the nozzle, and
d is the diameter of the nozzle. Using an analogy with pipe
flow, Isaev [18] developed an expression for the range with drag
which also included Frd . Arato, Crow, and Miller [9] conducted
vertical height experiments and noticed that jet height efficiency
(ηh ≡ h/H), defined as the jet height (h) divided by the maximum
height that a jet could obtain without drag (H), was a function of
Frd . They also developed a correlation for ηh as a function of Frd ,
for which ηh would have exceeded 1 if Frd were small enough,
an impossibility. Arato, Crow, and Miller [9] provided very little
explanation to justify the use of Frd . Hatton and Osborne [15]
suggested that if their model had quadratic drag, then the Froude
number is the important parameter. Their model used a nonphys-
ical drag parameter which they called k. If k ≡ 3

4 (ρg/ρl)Cd/D
then their quadratic drag model corresponds exactly to a model
of the real trajectory of a spherical particle of diameter D. The
representative droplet diameter D is roughly proportional to d, the
nozzle diameter. Assuming this proportionality holds, a Froude
number (Frd) can be constructed in their exact solution. Hatton
and Osborne [15] also noted that “k becomes zero at Frd = 37 and
would be negative for values of Frd below 37. This, of course is
not possible, and [the proposed model] was arranged to put k at
the small value of 0.001 for Frd < 37”.

Tuck [19] demonstrated that the lead order terms of the poten-
tial flow solution for a water jet’s trajectory (i.e., a trajectory with
no breakup) are identical to the trajectory of a dragless projectile
without wind. Further, Oehler [20, 21] showed experimentally
that under conditions in which no breakup occurs, the trajectory
of a water jet launched at an angle is parabolic, consistent with
a dragless trajectory. These observations were further confirmed
by Kawakami [22], who observed that the range of a water jet
equaled that of a dragless trajectory when the velocity was low
enough.

These results indicate that the nozzle Froude number largely
controls the maximum extent of the jet, and that there exists a
critical Froude number, below which the jet experiences negligible
drag in the absence of wind. Theoretical analysis of this situation
as detailed in this paper indicates the Froude number is paramount
in the trajectory problem. This analysis also shows that below
a critical Froude number the jet does not appreciably break into
droplets, and thus the range or height it attains is the maximum
possible.

2 VERTICAL HEIGHT ANALYSIS
Theory. The vertical fountain case without wind is analyzed
here. The jet is assumed to remain coherent and dragless until
its height equals the breakup distance (Lb), after which the jet
immediately breaks into spherical droplets of uniform diameter D.
These droplets do not interact (i.e., they can overlap without any

collisions or other effects) and they do not change diameter (i.e.,
evaporation, coalescence, and secondary breakup are neglected).
Further, the gas phase velocity is zero, meaning that there is no
air entrainment.

For x < Lb, where x is the height above the nozzle, the equa-
tion of motion of the jet is

ẍ =−g . (1)

The same equation is used to find the maximum possible
height without drag (H). If a jet is launched vertically at velocity
V0, then H = V 2

0 /(2g). If the maximum height the water jet
reaches is less than the breakup distance, then the jet never breaks
up and equation 1 describes the entire trajectory.

The solutions to equation 1 are ẋ(t)=V0−gt and x(t)=V0t−
1
2 gt2. These can be solved when x = Lb to find that ẋ(x = Lb)≡
Vb =

√
V 2

0 −2gLb. This result is used as the initial condition in
the next stage of the trajectory.

Assuming that Lb < H, at x = Lb the jet breaks into droplets
of diameter D. The droplets are considered large enough for a
quadratic drag law to apply (due to the high Reynolds number).
Then the equation of motion for x > Lb is

mDẍ =−mDg− 1
2

ρgCdADẋ2 , (2)

or assuming the droplets are spherical,

π

6
ρlD3ẍ =−π

6
ρlD3g− 1

2
ρgCd

π

4
D2ẋ2 . (3)

After simplification, the equation of motion becomes

ẍ =−g− 3
4

ρg

ρl

Cd

D
ẋ2 . (4)

Then, through non-dimensionalization with τ ≡ t/(Vb/g) and
x∗ ≡ x/(V 2

b /g) we find

d2x∗

dτ2 =−1− 3
4

ρg

ρl
Cd

V 2
b

gD︸ ︷︷ ︸
C∗

d

(
dx∗

dτ

)2

. (5)

If the coefficient on the final term is defined as C∗
d and dx∗/dτ

is defined as v∗, then the equation is simplified:

dv∗

dτ
=−

(
1+C∗

d(v
∗)2) . (6)
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This equation can be integrated from time 0 (when the
breakup starts and where ẋ =Vb) to find that

v∗ =
dx∗

dτ
=

tan
[
atan

(√
C∗

d

)
−
√

C∗
dτ
]√

C∗
d

. (7)

Integrating this equation from 0 to ∆h∗(≡ (h− Lb)/H) in
x∗ (which corresponds to integrating in the physical variable x
from Lb to the maximum actual height, h) and from time 0 until
when the droplet’s velocity is zero results in (after applying some
trigonometric identities):

∆h∗ =
log(C∗

d +1)
2C∗

d
. (8)

Rewriting this in terms of the height efficiency, ηh ≡ h/H and
defining L∗ ≡ Lb/d and Frd ≡ V 2

0 /(gd) results in the following
expression:

ηh =
2L∗

Frd
+

(
1− 2L∗

Frd

)
log(C∗

d +1)
C∗

d
. (9)

After defining a non-dimensionalized droplet diameter D∗ ≡ D/d,
C∗

d can be written as

C∗
d =

3
4

ρg

ρl

Cd

D∗ (Frd −2L∗) . (10)

The reader should recognize the explicit dependence of C∗
d

on Frd . The reduced drag coefficient C∗
d can not physically be

less than zero, suggesting a critical Froude number exists where
Frd,crit = 2L∗. Note that when C∗

d = 0, ηh is unity by equation 9.
Existing correlations for the breakup distance Lb and rep-

resentative droplet diameters D can be used with equation 9 to
estimate the jet height efficiency.

Comparison of theory with experiments of Arato, Crow, and
Miller [9]. Arato, Crow, and Miller [9] conducted vertical foun-
tain height experiments with a variety of nozzles. Their main
nozzle had a diameter of 25.65 mm. Unfortunately, they provided
no measurements of the breakup characteristics of their nozzles.
Consequently, we used an existing experimental correlation for
the breakup length for fully developed turbulent flow in the appro-
priate Weber number range [23]1:

L∗ = 7.40We0.34
ld . (11)

1Though the correlation is valid only for 1.0 ·102 < Weld < 1.1 ·106, we use
it down to a Weber number of zero for simplicity.
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FIGURE 1. Comparison between theoretical jet height efficiency as
predicted by equation 9 and as measured by Arato, Crow, and Miller [9].
Also included is a sensitivity analysis of equation 9 to the breakup dis-
tance and droplet diameter.

As a distribution of droplet sizes is present in the spray, it is
necessary to pick an appropriate representative droplet size. Our
interest in this work is the maximum extent of the trajectory, as
this often is the only experimental quantity available. As previous
research has suggested, smaller Froude numbers increase this
maximum extent. Thus, the largest droplets are launched farthest.
The representative droplet size was chosen to be 0.75 times the
nozzle diameter (i.e., D∗ = 0.75) to match the experimental data
reasonably well. This value is reasonable given that the largest
structures far from the nozzle exit are roughly that size [24]. The
fit becomes poorer as the nozzle Froude number increases. The
poor fit at high Froude numbers may be due to the largest droplet
size decreasing as the Weber number increases, the droplet shape
changing farther from spherical as the Weber number increases
(increasing the drag coefficient), or air entrainment. However, we
have not tested these hypotheses.

The density of air was taken to be ρg = 1.2kg/m3, the density
of water was taken to be ρl = 1000kg/m3, the drag coefficient
for the droplets was taken to be that of a sphere at high Reynolds
number, Cd = 0.47.

The height efficiency is plotted in figure 1. The comparison
is excellent, suggesting that even a model as simple as that just
developed captures most of the relevant physics.

Note that the Bond number (Bold ≡ ρlgd2/σ = Weld/Frd)
for each experimental point was not necessarily the same as that
for the model line. This was because each point corresponds to a
particular nozzle diameter which was not specified in the original
plot or text. We assumed all these diameters were 25.65 mm. The
Bond number variation likely contributed to the spread of the data,
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but it does not seem to have been large enough to cause additional
problems.

Observations. From equation 9, some general observations can
be made. First, increasing the breakup distance (through L∗) al-
ways increases the jet height efficiency. Thus, nozzle designs that
explicitly choose to increase the breakup distance will improve
the jet height efficiency. As will be shown in the next section, the
same result also applies in the more general (flat-fired) trajectory
case.

The second observation is that larger droplets (through D∗)
increase the jet height efficiency. This is consistent with past tests
which have indicated that fine mist sprays have poor range [25].

The sensitivities of the vertical height to the breakup distance,
L∗, and the representative droplet diameter, D∗, are relevant. As
can be seen in figure 1, doubling the breakup distance has a similar
effect to doubling the representative droplet size. Increasing the
breakup distance from nozzles used in practice by a factor of 2
may be possible given that merely changing the length of the
nozzle can increase the breakup distance by about a factor of
about 10 [10]. However, increasing the largest droplet size is not
likely given that all droplets tend to be smaller than the nozzle
diameter in the range of Weber numbers seen in this case [4].

As previously noted, a critical Froude number exists, such
that the jet height efficiency will be 1 below this Froude number.
Equation 9 suggests that ηh = 1 when C∗

d = 0. Solving for the
critical Froude number from the definition of C∗

d returns

Frd,crit = 2L∗(Weld,crit) , (12)

where L∗ is written as a function of the Weber number correspond-
ing to the critical Froude number for clarity. L∗ in this expression
is a function of Weld,crit ≡ BoldFrd,crit. Then equation 12 can be
rearranged to state

Frd,crit = 2L∗(BoldFrd,crit) . (13)

The critical Froude number is solely a function of the Bond
number for a particular nozzle. Equation 13 combined with the
correlations used indicate that Frd,crit is about 600 for the nozzles
used by Arato, Crow, and Miller [9]. It is worth highlighting that
this argument assumes that L∗ is only a function of Weld . Alter-
native correlations could have different functional dependencies,
e.g., including the Reynolds number. Wu and Faeth [23] demon-
strate, however, that a large amount of data is well correlated by
solely the liquid Weber number.

Also, in principle, the critical Froude number can be found
without solving for the entire trajectory with drag. The critical
Froude number occurs when the breakup length equals the dis-
tance the jet travels. In this case, one could find the critical Froude

number by setting H = Lb and rearranging the result into a Froude
number.

3 HORIZONTAL RANGE ANALYSIS
The “flat-fire” trajectory (here named “flat-fired” to distin-

guish it from deflagrations) is an approximation to the ballistic
trajectory of a projectile for shallow or small firing angles above
horizontal (θ0). This approach can lead to an implicit equation
for the range. In this work, the flat-fired approximation is applied
to the water jet case to gain an understanding of the factors which
control its trajectory. McCoy [26] and Carlucci [27] detail this
approximation and its historical use. The flat-fired approximation
will be compared to the numerical evaluation of the trajectory to
determine the limits of its validity.

The general solution procedure loosely follows that used for
the vertical fountain case. The same assumptions as before are
made (the droplets do not interact or change diameter and air en-
trainment is neglected). The first step is to solve the dragless part
of the trajectory. The governing equations and initial conditions
are

ẍ = 0 , ÿ =−g

x(0) = 0 , y(0) = h0

ẋ(0) =V0 cosθ0 , ẏ(0) =V0 sinθ0 . (14)

Note that x is the horizontal direction and y is vertical. The
solution of these equations is

x =V0 cosθ0 t , y =V0 sinθ0 t − 1
2

gt2 +h0 . (15)

Existing correlations for breakup distance neglect the effect
of gravity changing the trajectory of the jet. It seems reasonable
to assume that in the case where the trajectory is bent (e.g., from
gravity), the jet breaks up when its arc-length equals the breakup
length. We are not aware of research investigating the effect of
gravity and launch angle on breakup length of a jet, so this as-
sumption is necessary. At worst, this assumption is accurate for
trajectories with small deviations from a straight line. Unfortu-
nately, for the dragless trajectory, the arc-length expression is too
messy to be usable. Consequently, the approximation V0tb = Lb
will be used to calculate a breakup time, tb, which will be used to
find the x and y locations of the breakup, xb and yb. This approxi-
mation is exact for a straight line trajectory, and consequently it
becomes more accurate as gravity becomes less important, i.e.,
as the Froude number increases. Applying this approximation
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results in

xb = x(tb) =��V0 cosθ0
Lb

��V0
= Lb cosθ0 , (16)

yb = y(tb) =��V0 sinθ0
Lb

��V0
− 1

2
g
(

Lb

V0

)2

+h0

= Lb sinθ0 −
gL2

b

2V 2
0
+h0 . (17)

The corresponding velocities at breakup are

ẋb = ub = ẋ(tb) =V0 cosθ0 , (18)

ẏb = vb = ẏ(tb) =V0 sinθ0 −
gLb

V0
. (19)

To define the range efficiency (ηR ≡ R/Rmax,h0=0), the maxi-
mum range a jet can obtain without drag must first be found. If
the starting height (h0) is zero, one can show that the maximum
range a dragless particle can obtain occurs at a firing angle of
π/4 radians and is Rmax,h0=0 =V 2

0 /g. Note that unlike ηh, ηR is
not bounded by 1 for nonzero starting heights. Elevated starting
heights increase range over than the reference case where there
is no starting height. Developing an explicit equation for range
efficiency that takes starting height into account is not possible,
as the optimal firing angle is a strong function of Frh0 . The maxi-
mum range must be found by solving an implicit equation. Also
note that as ηR is not bounded by 1, it is not possible to make
comparisons between different firing angles in terms of efficiency
with ηR; one must convert to a formulation where Rmax takes into
account the starting height. As the firing angle is basically fixed
in applications, this is not a major concern.

The droplet part of the trajectory is governed by the equation

mD
d2~x
dt2 =−mD~g−

1
2

ρgCdAD

∣∣∣∣d~xdt

∣∣∣∣ d~x
dt

. (20)

This equation is non-dimensionalized with τ ≡ t/(V0/g) and
~x∗ ≡~x/(V 2

0 /g) to return

d2~x∗

dτ2 =− ĵ−C∗
d

∣∣∣∣d~x∗dτ

∣∣∣∣ d~x∗

dτ
(21)

where

C∗
d ≡ 3

4
ρg

ρl
Cd

V 2
0

gD
=

3
4

ρg

ρl
Cd

Frd

D∗ , (22)

which is similar to the definition used in the vertical case, except
that the velocity here is V0. This selection was found to greatly
simplify the result when compared against the result from select-
ing the breakup velocity. The breakup velocity had been used in
the vertical fountain case.

The flat-fired approximation suggests that for small firing
angles (θ0), the droplet velocity approximately equals ẋ because
ẏ is small. Mathematically, this states

∣∣∣∣d~x∗dτ

∣∣∣∣≈ dx∗

dτ
. (23)

After defining

u∗ ≡ dx∗

dτ
and v∗ ≡ dy∗

dτ
, (24)

the resulting system of ODEs to solve is

du∗

dτ
=−C∗

d (u
∗)2 , (25)

dv∗

dτ
=−1−C∗

du∗v∗ . (26)

Overprediction of ηR is expected with this approximation,
with the overprediction being worse at larger angles. This is
because the effective drag force is lower in a flat-fired trajectory
than a real one.

The non-dimensionalized initial conditions for the breakup
stage are

x∗b = x∗(0) =
gLb

V 2
0

cosθ0 =
L∗

Frd
cosθ0 , (27)

y∗b = y∗(0) =
L∗

Frd
sinθ0 −

1
2

(
L∗

Frd

)2

+
1

Frh0

, (28)

u∗b = cosθ0 , (29)

v∗b = sinθ0 −
L∗

Frd
. (30)

After applying the initial conditions, the solutions of equa-
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tions 25 and 26 are

u∗ =
u∗b

u∗bC∗
dτ +1

, (31)

x∗ =
log
(
u∗bC∗

dτ +1
)

C∗
d

+ x∗b , (32)

v∗ =−
(

u∗bC∗
dτ +1

2u∗bC∗
d

)
+

1
u∗bC∗

dτ +1

(
v∗b +

1
2u∗bC∗

d

)
, (33)

y∗ =−
(

u∗bC∗
dτ +1

2u∗bC∗
d

)2

+

(
v∗b

u∗bC∗
d
+

1
2(u∗bC∗

d)
2

)
log(u∗bC∗

dτ +1) (34)

+
1

4(u∗bC∗
d)

2 + y∗b .

Note that from the solution for x∗

C∗
d (x

∗− x∗b) = log(u∗bC∗
dτ +1) . (35)

The time when the droplets impact the ground is defined as
τR. Note that x∗(τR) = ηR because x∗ ≡ xg/V 2

0 and thus if x = R
at τ = τR then x∗(τR) = Rg/V 2

0 ≡ ηR.
To find τR, equation 34 can be used. By definition, the

droplets impact the ground at time τR, and thus the dimensionless
height above the ground (y∗) is zero:

y∗(τR) = 0 =−
(

u∗bC∗
dτR +1

2u∗bC∗
d

)2

+

(
v∗b

u∗bC∗
d
+

1
2(u∗bC∗

d)
2

)
log(u∗bC∗

dτR +1)︸ ︷︷ ︸
equation 35

+
1

4(u∗bC∗
d)

2 + y∗b . (36)

Equation 35 can be used to simplify one of these terms. After
substituting in that term and rearranging, the result is

u∗bC∗
dτR +1 =

[
(2C∗

dv∗bu∗b +1)2C∗
d(ηR − x∗b)

+1+ yb(2u∗bC∗
d)

2]1/2
, (37)

which can be substituted back into equation 35 to find an implicit
algebraic equation for ηR:

2C∗
d(ηR − x∗b) = log

[
(2C∗

dv∗bu∗b +1)2C∗
d(ηR − x∗b)

+1+ yb(2C∗
du∗b)

2] . (38)

Substituting in the values of the initial conditions returns the
result seen in equation 39. This is the equation for ηR provided
models for L∗ and D∗ are used and that all of the constants are
available.
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FIGURE 2. Comparison between flat-fired theory (equation 39) and
experimental data from Theobald [1] for θ0 = 35◦. Note that the numeri-
cal solution is the one directly below the solid black line. Also plotted is
sensitivity analysis of ηR to the breakup distance and droplet diameter
for the same firing angle.
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FIGURE 3. Comparison between flat-fired theory (equation 39) and
experimental data from Theobald [1] for θ0 = 20◦. The numerical so-
lution is not plotted, as it was essentially coincident with the black line.
Also plotted is sensitivity analysis of ηR to the breakup distance and
droplet diameter for the same firing angle.
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3
2

ρg

ρl
Cd

Frd

D∗

(
ηR −

L∗

Frd
cosθ0

)
= log

[(
3
2

ρg

ρl
Cd

Frd

D∗

(
sinθ0 −

L∗

Frd

)
cosθ0 +1

)
3
2

ρg

ρl
Cd

Frd

D∗

(
ηR −

L∗

Frd
cosθ0

)

+1+

(
L∗

Frd
sinθ0 −

1
2

(
L∗

Frd

)2

+
1

Frh0

)(
3
2

ρg

ρl
Cd

Frd

D∗ cosθ0

)2
]
. (39)

Comparison with experiments of Theobald [1]. Equation 39
was compared against experiments done by Theobald [1] in fig-
ures 2 and 3. These experiments are presently the only trajectory
tests available in the literature conducted indoors, which elimi-
nated the influence of wind. This is necessary as the model does
not account for wind and intermittent wind can be difficult to
account for.

The fit between Theobald’s data and the model is reasonable.
The same breakup length correlation (equation 11) and represen-
tative dimensionless droplet size (D∗ = 0.75) used in the vertical
height case are used here.

Also plotted is the numerical solution to the full trajectory
equations without approximation (equation 21), showing excellent
fit between the numerical and approximate solution despite the
fact that 35◦ is not a small angle. The small error demonstrates
the accuracy of the flat-fired approximation up through relatively
large angles.

As in the vertical height case, the Bond number (Bold) for
each experimental point was not necessarily the same as that for
the model. Again, the Bond number does not appear to vary
adequately to cause a poor fit.

Observations. As can be inferred from figures 2 and 3, the
sensitivity of the flat-fired solution to increases in the breakup
length and representative droplet size are consistent with those
seen in the vertical height case. At larger firing angles, the range
increases more greatly as the droplet size increases.

Consistent with the vertical height case, it is unlikely that the
size of the largest droplets in the spray could increase to improve
the range. However, this does not indicate that droplet size is
unimportant for range. In the trajectory case, the distribution of
water on the surface is important. The droplet size distribution
will strongly influence the distribution of water on the surface.
Thus, increasing the size of the smallest droplets would prove
advantageous where a more compact distribution is desired, as is
the case in hose stream fire protection. In contrast, increasing the
spread of the droplet size distribution would prove advantageous
in jet sprinkler irrigation, as a uniform distribution of water on
the ground is desired.

The critical Froude number of the trajectory is difficult to
find analytically. A critical Froude number could be found from
this analysis, however, its accuracy would be suspect because of

the estimate of the arc-length used. This estimate is inaccurate
when the coherent portion of the jet is not almost a straight line,
which is true for low Froude numbers, where the critical Froude
number is. The easier approach mentioned in the vertical jet case
of setting the breakup length equal to the distance the jet travels
(the arc-length) is not feasible analytically due to the complexity
of the arc-length formula. Also complicating manners is the range
non-dimensionalization used. The critical Froude number can be
found numerically in this model, if it is desired.

4 CONCLUSIONS
1. Assuming breakup takes place instantaneously, the trajectory

of a water jet can be decomposed into components before
and after breakup.

2. The trajectory before breakup is well described by the trajec-
tory of a dragless particle, in accordance with potential flow
theory and prior experimental observations.

3. The trajectory after breakup is well described by the trajec-
tory of a spherical particle experiencing quadratic drag, as is
commonly done for sprays.

4. Increasing breakup length increases both the maximum
height of a vertical fountain as well as the maximum range
of a nominally horizontally fired water jet.

5. The maximum height and maximum range also increase with
the maximum droplet size. However, this size is already
nearly as large as it could be, so increasing maximum droplet
size is not a viable way to improve range.

6. Increasing the nozzle Froude number strongly reduces the
range.

7. Below a certain Froude number, termed the critical Froude
number, no breakup occurs and the jet trajectory is that of a
dragless particle.
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